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Abstract

There are currently about 10000 drug-like compounds. These are sparsely, rather than uniformly, distributed through chemistry space.

True diversity does not exist in experimental combinatorial chemistry screening libraries. Absorption, distribution, metabolism, and excretion

(ADME) and chemical reactivity-related toxicity is low, while biological receptor activity is higher dimensional in chemistry space, and this

is partly explainable by evolutionary pressures on ADME to deal with endobiotics and exobiotics. ADME is hard to predict for large data sets

because current ADME experimental screens are multi-mechanisms, and predictions get worse as more data accumulates. Currently,

screening for biological receptor activity precedes or is concurrent with screening for properties related to `̀ drugability.'' In the future,

`̀ drugability'' screening may precede biological receptor activity screening. The level of permeability or solubility needed for oral absorption

is related to potency. The relative importance of poor solubility and poor permeability towards the problem of poor oral absorption depends

on the research approach used for lead generation. A `̀ rational drug design'' approach as exemplified by Merck advanced clinical candidates

leads to time-dependent higher molecular weight, higher H-bonding properties, unchanged lipophilicity, and, hence, poorer permeability. A

high throughput screening (HTS)-based approach as exemplified by unpublished data on Pfizer (Groton, CT) early candidates leads to higher

molecular weight, unchanged H-bonding properties, higher lipophilicity, and, hence, poorer aqueous solubility. D 2001 Elsevier Science Inc.

All rights reserved.
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1. Introduction

The literature emphasis on combinatorial chemistry and

the screening of up to million(s) of compounds tends to

obscure the fact that the world of drug-like compounds is

quite limited, and that most of the information content

related to desirable drug-like properties is contained in

relatively small numbers of compounds. Filters for select-

ing drug-like compounds (Brennan, 2000), or schemes for

differentiating between nondrug and drug-like compounds

are based on analysis of libraries of a few thousand to

50000 compounds (Sadowski & Kubinyi, 1998; Shah et

al., 1998). The ability to construct large experimental

screening libraries and the very large estimates of chem-

istry space accessible to low molecular weight compounds

has been coupled with the concept of `̀ maximal chemical

diversity'' (Martin et al., 1995). This coupling results in

the argument that screening efficiency and the probability

of a useful screening active will be increased if screening

libraries span as large a volume of chemistry space as

possible. For example, a recent chemical diversity analy-

sis suggests that `̀ in order to ensure nanomolar ligands to

any given target, a library of at least 24 million molecules

will be required'' (Wintner & Moallemi, 2000). In con-

trast to this estimate, current experience suggests that

clinically useful drugs exist as small tight clusters in

chemistry space. For example, the estimated number of

drug targets is only about 500 (Drews, 2000). Maximal

chemistry diversity is an inefficient library design strat-

egy, unless there are vast numbers of useful undiscovered

targets. Moreover, while maximal chemistry diversity is

possible in-silico, it remains to be seen whether it is

possible in an experimental setting. The theme of large

chemistry space and small target space applies to the

screening arenas of absorption, distribution, metabolism,

and excretion (ADME). The author contends that ADME

chemistry space is much simpler than pharmacological

target chemistry space. The result is that simple filters and

rules work for ADME (Clark, 1999; Lewis, 2000;

Lipinski, Lombardo, Dominy, & Feeney, 1997), but not
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for pharmacological targets. Acceptable ADME space

may be considered as a smaller subset of pharmacology

target space, which is in turn likely a very small subset of

chemistry space. Paradoxically, for large data sets, phar-

macological target SAR prediction is easier than for

ADME prediction. Much of the reason lies in the multi-

mechanism nature of current ADME screens, as opposed

to the typical single mechanism of pharmacological target

screens. The theme of information content related to

desirable drug-like properties in relatively small numbers

of compounds applies to the question of the relative

importance of poor solubility or poor permeability in

the problem of poor oral absorption. The time-dependent

analysis of simple properties from Merck and Pfizer

clinical candidates illustrates that the research approach

to lead generation strongly influences solubility and

permeability. As targets become more complex, a

Merck-like `̀ rational drug discovery'' approach tends to

poorer permeability, while a Pfizer (Groton, USA)-like

high throughput screening (HTS) approach tends to

poorer solubility.

2. Drugs and chemistry space

The world of drug-like compounds is limited in that

there are currently only about 10 000 drug-like com-

pounds. Drug-like is defined as those compounds that

have sufficiently acceptable ADME properties and suffi-

ciently acceptable toxicity properties to survive through

the completion of human Phase I clinical trials. Com-

pounds that survive through Phase I and into Phase II

clinical efficacy studies are conveniently identified by

the presence of a United States Adopted Name (USAN),

International Non-Proprietary Name (INN). Some of

these may be New Chemical Entities (NCE) that have

been approved for marketing by a regulatory agency in

at least one country. As an illustration, there were about

9500 USAN names in the last compilation of the United

States Pharmacopeia. Regulatory approval does not

imply commercial success. For example, in the early

1970s, it was common for a drug to receive early

approval in one or two countries, and then to encounter

problems in the large market regulatory bodies and to

never be actually marketed.

Drugs and their targets are sparsely distributed through

chemistry space (Drews, 2000), and the members of a

structural chemotype can be thought of as small tight

clusters in the vastness of chemistry space. The combi-

natorial chemistry focus on chemical libraries with very

large numbers of compounds tends to hide the fact that

the majority of information on drug-like properties is

contained in a very small number of compounds. This

fact, in turn, raises the issue of the distribution of drugs

in chemistry space. Chemistry space for reasonably sized

molecules, i.e., those up to about molecular weight 600,

and containing the common atoms found in drugs is very

large. Estimates range widely from 1040 to 10100 with

1062 as a commonly quoted middle-range estimate. Given

the small number of known drug-like compounds and the

vastness of chemistry space, there are only several pos-

sibilities on the distribution of drugs in chemistry space.

At the extremes, either drugs are found in small, infre-

quently distributed clusters in the vastness of chemistry

space (the authors view). Alternatively, drugs are uni-

formly distributed through the vastness of chemistry

space, and, so far, the pharmaceutical companies have

only found an incredibly small proportion of the possible

drugs that might exist.

The number of possible drugs acting at receptors can

be over-estimated from a simple reduction to absurdity

argument working backward from the number of possible

targets. The basic idea is that there cannot be more

drugs than there are drug receptor targets and that we

can set an upper limit on the number of drug targets.

The argument is as follows. The size of a large human

might be 100 kg. From the `̀ rule of five'' (Lipinski et

al., 1997), we know that the upper size range for orally

acting drugs is about molecular weight 500, correspond-

ing to about the upper 90th percentile in drug size

distribution. The minimum size of a drug target cannot

be smaller than that of its ligand. Therefore, the max-

imum number of possible drug targets of MWT 500 in a

human can be estimated from Avogadro's number of

6.02� 1023 molecules/mol. For a minimum target mole-

cular weight of 500, a 100-kg human can contain only

100/0.5� 6.02� 1023 targets. This is about 1026 targets.

If we were able to screen against all possible targets in a

purely random manner, and given a chemistry space at

the lower estimate of 1040, we would still have only one

chance in 1014 of finding a hit. In actuality, most

receptor targets will have a molecular weight much

larger than 500, so the number of targets will be smaller

than 1026. Also, it seems highly unlikely that one could

screen against all possible targets at the same time, so

the actual probability of finding a hit would be much

smaller than one in 1014. The odds of finding a hit is

even worse if one takes one of the estimates of chem-

istry space larger than 1040. The hit rate would be far

lower than one in 1014. This is a truly miserable

prediction for success. A number of about 1014 chemical

compounds far exceeds the number of compounds (low

tens of millions) that have historically been abstracted by

the Chemical Abstracts Service. The chance of a hit is

somewhat increased because there are very likely to be

multiple actives at any one target. However, the

improvement in probability of a hit because of multiple

actives is likely to be masked by the conservative

assumptions as to drug target number and by the con-

servative estimates on the numbers of accessible small

molecular weight compounds. Further masking may arise

from the very conservative estimate based on screening
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of all possible drug targets simultaneously, rather than

separately. All in all, a random distribution of drugs in

chemistry space suggests that the HTS of a maximally

chemical diverse library should seldom, if ever, work.

3. Maximal chemical diversity. Fact or fiction?

From HTS experience, we know that for the more

tractable targets, i.e., g-protein coupled receptors, ion

channels, and kinases, we can reliably detect hits from

screening `̀ diverse'' chemical libraries in the size range

of 105±106 (Spencer, 1999). How do we reconcile the

experimental finding that HTS works in finding hits with

the dismal prediction for screening success from the

aforementioned thought experiment? The answer is that

our ``diverse'' screening libraries are anything but

diverse. True diversity can indeed possibly be attained

in-silico in a virtual chemical library. However, as of

today, diversity disappears as soon as one tries to

translate the computational design into experimental

reality. The rules of chemistry synthesis effectively

eliminate huge realms of chemistry space. For example,

there are no general reliable and predictable methods to

construct carbon±carbon bonds between unactivated reac-

tion centers. Only a subset of chemical synthesis tech-

nology is currently accessible to robotic chemistry high

throughput methodology. The supply of available chemi-

cal building blocks severely constrains the construction

of a truly diverse library. Apparently trivial problems,

such as reagent solubility in organic solvents, conspire to

limit robotic synthesis. Chemical vendors sell compounds

that are likely to be purchased. Hence, there is an

inherent bias towards available compounds that are likely

to have agrochemical or pharmaceutical applications.

Even the chemistry synthetic literature has a bias. Aca-

demics require funding to carry out research, and one of

the best strategies to achieve funding is to work on

chemistry related to known biomedical needs. In fact,

one can make the argument that screening truly diverse

libraries for drug activity is the fastest way for a

company to go bankrupt because the screening yield

will be so low. In the author's opinion, what has saved

some companies is the impossibility of experimentally

constructing a truly diverse chemical screening library.

The current disillusionment with screening of large

`̀ diverse'' libraries (Tapolczay & Cush, 2000), and the

trend towards smaller more focused screening libraries

(Borman, 2000; Martin & Wong, 2000) reflects both the

sparse distribution of drugs in chemistry space and the

realization that ADME/toxicity properties are as, or even

more, important than purely biological receptor optimiza-

tion in the search for drugs with real therapeutic poten-

tial potency (Darvas, Dorman, & Papp, 2000; Lipinski et

al., 1997; Pickett, McLay, & Clark, 2000; Wagener &

Van Geerestein, 2000).

4. ADME and pharmacological target dimensionality in

chemistry space

ADME and chemical reactivity-related toxicity is very

different from biological receptor activity in its occu-

pancy of chemistry space. Compounds with biological

receptor activity exist in small, tight clusters. The actual

number of existing in-vivo drug targets is very small,

and has been estimated at 417 in total (Drews, 1996).

However, the chemistry space they occupy is very large.

Hence, the chemical descriptor space can be very large.

For example, the dimensionality of chemistry drug space

has been estimated to lie in the range of 7±12 (Spencer,

1999). By way of contrast, the chemical space is much

simpler and is of low order for the description of

ADME and some of the chemical reactivity components

of toxicity. The chemical space for ADME is less

complex in the sense that it is of lower dimensionality.

For example, the descriptors that describe almost all

ADME variability are relatively few and simple. A

principal component analysis can be used to identify

descriptors that are unique, i.e., that are really different

from each other. This type of analysis on a range of

possible descriptors typically generates only five or,

perhaps, six orthogonal (unique) descriptors. These

might, for example, be descriptors related to size,

lipophilicity, polarity, H-bonding status, and charge sta-

tus. As a result, even simple rules and filters (like the

rule of five) work remarkably well (Lipinski et al.,

1997; Pickett et al., 2000).

The differences in dimensionality between ADME and

chemistry drug space could be an inherent property of

ADME and chemistry drug space or could be related at

least in part as to whether the space is inclusionary or

exclusionary. An inclusionary space defines those com-

pounds that include a certain property, for example those

compounds that are antagonists for a particular receptor

subtype. This type of space tends to be higher dimen-

sional. An exclusionary space defines those compounds

that exclude a certain property, for example those

compounds that are not drug-like. This type of space

tends to be lower dimensional. For example, algorithms

for the distinction between drug-like and non-drug-like

tend to be fairly simple. (Sadowski & Kubinyi, 1998;

Shah, Walters, & Murcko, 1998; Wagener & Van

Geerestein, 2000). Currently, many experimental ADME

assays tend to be exclusionary, for example a compound

is not soluble, not permeable, or not metabolically

stable, and so this exclusionary character could be

responsible for at least some of the lower dimensionality

of current ADME data.

Chemical reactivity-related toxicity can also be of low

dimensionality in chemistry space. Simple chemical rules

can be used as filters for mutagenicity and carcinogeni-

city. While numerical predictivity still remains a formid-

able challenge, the methods we currently have are
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operationally useful. Rule-based programs, such as the

`̀ Derek'' program from Lhasa, UK at the University of

Leeds, and fragment-based correlation programs, such as

the Multicase software developed by Giles Klopman, and

the Topkat software currently distributed by Oxford

Molecular, all find use at some level in the pharmaceu-

tical industry. Very simple rules for mutagenicity predic-

tion, such as `̀ nitro-aromatics are bad'' or `̀ stay away

from Michael acceptors'' have no counterpart in the

prediction of biological receptor affinity.

4.1. ADME and evolutionary pressure

Part of the difference between ADME chemistry space

and biological receptor chemistry space is explainable by

evolutionary pressures. Biological receptors evolved with

a high degree of selectivity towards a ligand so as to

minimize receptor cross-talk between agonists, thereby

enhancing signal to noise ratio. This evolutionary trend

translates into a high dimensional occupancy of biological

receptors in chemistry space. There is another evolution-

ary trend that is seldom mentioned. There must also be a

selection pressure against antagonists. It is hard to believe

that evolutionary fitness would be enhanced by the

indiscriminate activity of xenobiotics acting as antagonists

of important signal transduction pathways. Perhaps this is

one of the reasons for the frequent presence of nonnatu-

rally occurring chemical motifs, such as the benzhydryl

moiety or 1,4-disubstituted piperazine moiety among

signal transduction antagonists. Natural products are fre-

quently extolled as sources of drug leads. However,

frequently occurring natural product motifs are seldom

found in drugs. An example of this can be found in a

very simple structural motif that is amazingly effective as

a structural query to define natural products from non-

natural products. Searching a library with the structural

query OCCOCCOCC pulls out almost exclusively natural

products and only a very few, mostly cytotoxic, drugs,

such as spermicides.

ADME properties evolved to deal with both endo-

biotics and exobiotics. The hallmark is, in general,

much greater latitude in structural specificity, and this

translates into a low dimensional occupancy of chem-

istry space. The low dimensionality of ADME properties

may also reflect that most current ADME experimental

data reflects a multiplicity of mechanisms. More on this

point follows.

4.2. ADME predictivity and multi-mechanism screens

In theory, ADME should be easier to predict than

biological receptor affinity. In practice it is not quite as

easy as one might expect. Why is this so? Screening

systems for biological receptor affinity are typically single

mechanism systems. A biologist screens for a single

mechanism, for example, a dopamine D-4 antagonist or

a muscarinic M-1 agonist. Computational models are

much easier to develop, and the resulting predictions

are much more robust for single mechanism experimental

data. Think how difficult it would be to develop a model

for a biological screen run against a mixture of receptors

in which, a priori, the contribution of each receptor type

to activity was unknown. Currently, many experimental

screens for ADME properties are multi-mechanism rather

than single mechanism systems. Examples of multi-

mechanism screens are aqueous solubility, metabolic sta-

bility to microsomal incubation, and membrane perme-

ability as measured in Caco-2 cell culture systems. As a

specific example, aqueous solubility is a multi-mechanism

system. Solubility is affected by lipophilicity, compound

H-bonding to solvent, intramolecular H-bonding, intermo-

lecular H-bonding (crystal packing), and by ionic charge

status. For a charged compound, solubility is even

affected by the counter ion. This effect occurs primarily

as a result of solution microequilibria between the ionic

partners and not as commonly thought because of an

effect on crystal packing forces. The multi-mechanism

nature of aqueous solubility makes predictions very diffi-

cult. In the author's experience, filters for prediction of

the most poorly soluble and most highly soluble are

operationally useful. Numerical prediction of aqueous

solubility works (within about a half log unit) only for

neutral compounds, and usually within a structurally

similar series.

Computational models for multi-mechanism assays

(such as ADME) typically get worse as more data is

accumulated. By contrast, computational models for

single mechanism assays (biological receptor affinity)

typically get better as more data is accumulated. The

reason is that as more and structurally more diverse

compounds are screened in a multi-mechanism system

more data is obtained on more mechanisms, and the

noise level for each individual mechanistic component

rises. The result of this is a cause of much frustration to

workers measuring and trying to predict multi-mechanism

systems. Very nice correlations are obtained on small

(usually mechanistically homogeneous) data sets. As the

data set size increases (and the mechanistic range

increases), the ability of the parameters used to predict

the experimental data sets decline markedly. Typically,

the same factors that worked so well in the small data

sets are still highly statistically significant in the larger

data set, but the predictivity is very low, perhaps too low

to have any operational value. In this type of scenario,

one often can only construct filtering algorithms (often

based on clustering methods) to identify the compounds

at the extremes of the property ranges. The solution to

this dilemma is to carry out single mechanism ADME

experimental assays and to construct single mechanism

ADME computational models. The ADME area is at

least 5 or more years behind the biology therapeutic

target area in this respect. Most of the main line ADME
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screens are still multi-mechanism. However, the land-

scape is changing just as it did a decade ago for

biological target identification. Today, we already have

early models for the position of transformation for

substrates of some of the most widely studied cyto-

chrome P450 metabolism systems and for a few trans-

porters (both influx and efflux). Perhaps 10% of the

human genome codes for the pumps and transporters so

important in ADME. So we should expect a proliferation

of single mechanism ADME assays akin to what we

have experienced in the last decade in the biology

therapeutic target area.

5. Screen for the target or ADME first?

Which is better to do first? Select for biological

receptor activity or select for properties related to `̀ drug-

ability,'' i.e., ADME/toxicity. Currently, the industry prac-

tice is to screen for the receptor activity first, and then to

follow with the `̀ drugability'' properties as a fast second.

However, the order of this process could well change.

Consider the problem faced when dealing with a new

biological therapeutic target. A priori, in general, nothing

will be known about the structural requirements for ligand

binding to the target. Exceptions are a very high degree

of structural similarity of the new target with a previous

target on which there is an information base, or where

there is some structural information on the new target

itself. For example, from a single crystal X-ray structure

or from NMR-based ligand affinity studies. For the most

general case of a new biological target, one cannot de

novo construct a computational model for the new target.

The best that one can do is to carry out a series of library

syntheses, then conduct assay screening, then computa-

tional model construction in an iterative sense with hope-

fully an improvement in the chemical hit rate, an

improvement in the assay potency, and an improvement

in the target computational models as one proceeds

through the iterations. Contrast this process with the

sequence where `̀ drugability'' precedes biological target

affinity identification. For orally active drugs, we have a

wealth of past history that we can apply to `̀ drugability''

properties, regardless of the nature of the new target. We

know a great deal about requirements for the physico-

chemical factors, such as size, lipophilicity, and H-bond-

ing, that are related to solubility and intestinal per-

meability. We can screen and in some cases predict for

the structural moieties associated with the statistically

most prevalent undesirable metabolic and toxicity pro-

cesses. The starting knowledge base is inherently higher

in the `̀ drugability'' prior to biological activity paradigm.

The rate-limiting factor in the `̀ drugability'' before bio-

logical activity paradigm is screening capacity. Current

Fig. 1. Minimum acceptable solubility in mg/ml. Bars show the minimum solubility for low, medium, and high permeability (Ka) at a clinical dose. The middle

three bars are for a 1-mg/kg dose. With medium permeability you need 52 mg/ml solubility.
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Table 1

Merck advanced clinical candidates

CAS MK-No. Patent Therapy Mechanism

50-02-2 MK-125 1962 allergy glucocorticoid

555-30-6 MK-351 1964 hypertension alpha-agonist

4548-15-6 MK-915 1966 antiprotozoal antiprotozoal

438-60-8 MK-240 1966 depression cholinergic antagonist

113-597 MK-184 1966 psychosedative,

neuroleptic

dopamine antagonist

148-79-8 MK-360 1966 antihelmintic fumarate reductase inhibitor

50-48-6 MK-230 1966 antidepressant parasympatholytic, antihistamine

58-54-8 MK-595 1966 hypertension, edema sodium reabsorption± inhibition± renal

1458-11-3 MK-875 1967 diuretic, sodium hydrogen exchange inhibitor

1214-79-5 MK-685 1967 cardio-protection GABA-antagonist, nhe1 na/h transporter inhibitor

3124-93-4 MK-665 1967 progestin progestogen

2609-46-3 MK-870 1967 hypertension, edema protein kinase C inhibitor

23456-71-5 MK-825 1968 inflammation cyclo-oxygenase inhibitor

303-53-7 MK-130 1968 psychosedative tricyclic

22662-39-1 MK-990 1968 antihelmintic (veterinary) antihelmintic

98-96-4 MK-056 1968 antibacterial (tuberculostatic) antituberculosis

22494-42-4 MK-647 1968 joint disease HMG CoA reductase inhibitor

22494-27-5 MK-835 1968 pain prostaglandin antagonist

26097-80-3 MK-905 1969 antihelmintic ATP synthase inhibitor

3447-42-5 MK-410 1969 inflammation, pain cyclo-oxygenase inhibitor

26718-25-2 MK-185 1969 atherosclerosis platelet aggregation inhibitor

23155-02-4 MK-955 1969 antibacterial protein synthesis inhibitor

28860-95-9 MK-486 1970 encephalopathy dopa decarboxylase inhibitor

1110-40-3 MK-650 1970 corticosteroids glucocorticoid

33468-84-7 MK-534 1971 hypertension xanthine oxidase inhibitor

33450-08-7 MK-436 1971 protozoacide NADH fumarate reductase inhibitor

31266-85-0 MK-316 1971 androgen antagonist androgen antagonist

33564-30-6 MK-306 1971 antibacterial cephalosporin

28875-92-5 MK-485 1971 neurological disorders histidine decarboxylase inhibitor, dopa

decarboxylase inhibitor

32579-36-5 MK-282 1971 renal glomerular filtration inhibitor

40396-83-6 MK-251 1972 anti-arrhythmic

35523-45-6 MK-641 1972 antibacterial gram-negative,-positive antibacterial

330-95-0 MK-075 1972 protozoacide

33817-20-8 MK-191 1972 antibacterial cell wall synthesis inhibitor

26538-44-3 MK-188 1972 anabolic estrogen, contraceptive

42190-91-0 MK-356 1973 antibacterial pivampicillin±probenecid salt

38194-50-2 MK-231 1973 joint disease cyclo-oxygenase inhibitor

4204-99-3 MK-910 1974 amoebicides

53108-00-2 MK-473 1974 hypertension, gout,

glaucoma

chloride channel blocker, uricosuric diuretic

55779-18-5 MK-302 1975 coccidiostatics hypoxanthine transport inhibitor

56592-32-6 MK-621 1975 antibacterial elongation factor inhibitor

58456-91-0 MK-447 1975 inflammation prostaglandin antagonist, diuretic

56049-88-8 MK-196 1975 hypertension uricosuric loop diuretic, voltage-dependent

chloride channel blocker

60200-06-8 MK-401 1976 antiparasitic phosphoglycerate kinase inhibitor

26839-75-8 MK-950 1976 angina pectoris beta-antagonist

60559-92-4 MK-761 1976 hypertension sympatholytic beta-antagonist

65195-55-3 MK-936 1977 antihelmintic GABA releaser

63463-51-4 MK-160 1977 psychosedative,

neuroleptic

dopamine antagonist

64221-86-9 MK-787 1977 antibacterial neutrophil activator

76547-98-3 MK-521,

MK-522

1980 cardiopathy angiotensin antagonist

76420-72-9 MK-422 1980 hypertension angiotensin antagonist

75225-51-3 MK-819 1980 atherosclerosis coenzyme A reductase inhibitor

75330-75-5 MK-803 1980 atherosclerosis HMG CoA reductase inhibitor

77086-21-6 MK-801 1980 anticonvulsant methyl-aspartate-n-antagonist

77236-35-2 MK-301 1980 acromegaly somatostatin agonist

64022-27-1 MK-212 1981 anorectic 5-HT2c-agonist

(continued on next page)
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ADME/toxicity assays are limited by the bioanalytical

analysis procedure. Biological target identification assays

in HTS use a single assay endpoint that is independent of

the compound that is screened. For example, a well-

defined colorimetric or fluorometric endpoint. This assay

design leads to true high throughput (in the hundreds of

thousands per year and higher). ADME assays, such as

metabolic stability or permeability, typically use a com-

pound-specific endpoint. The compound disappears or is

transferred from one compartment to another and the

change in concentration is measured. Compound specific

assays are currently medium throughput (in the low tens

of thousands per year) even with the best MS/MS

analytical equipment. I would argue that in the long term

(the next 10 years), the technical ability to run ADME

assays as single mechanism assays in true high through-

put mode is likely to markedly increase. This is more

probable than a marked increase in the detailed structural

knowledge base for new target to ligand interactions. If I

am correct in this supposition, we should see a reversal in

the order of research activities, i.e., `̀ drugability'' will

precede, not follow, target identification.

6. Solubility, permeability, and potency

What level of permeability or solubility is needed to

minimize poor absorption? Fig. 1 shows a bar graph that we

distribute to our medicinal chemists that answers this ques-

tion. It depicts the minimum acceptable solubility in mg/ml

that is required for an orally active drug. The vertical

columns are grouped in sets of three and show the minimum

thermodynamic aqueous solubility (at pH 6.5 or 7.0) that is

required for low, medium, and high permeability values (Ka)

at a particular clinical dose. The middle set of three bars is

the required solubility for a 1-mg/kg dose for compounds

with low, medium, and high intestinal permeability. To

achieve oral absorption, a compound with medium intestinal

permeability, and a projected human potency of 1 mg/kg,

(the middle bar in the middle set of three) needs a minimum

aqueous solubility of 52 mg/ml.

The General Pharmaceutics Laboratory in our pharma-

ceutical organization profiles all newly nominated clinical

candidates. As part of the evaluation, a maximum absorbable

dose (MAD) is calculated for oral dosage forms based on the

expected clinical potency, solubility, and permeability (Cur-

CAS MK-No. Patent Therapy Mechanism

79902-63-9 MK-733 1981 atherosclerosis HMG CoA reductase inhibitor

70288-86-7 MK-933 1982 antiparasitic microfilaricidal agent

81377-02-8 MK-678 1982 diabetes releasing factor inhibitor, somatostatin agonist

63141-67-3 MK-711 1983 anorexia, appetite stimulant 5-HT antagonist

81129-83-1 MK-791 1983 infectious disease leukotriene-d4 peptidase inhibitor Ð renal

70458-96-7 MK-366 1983 antibacterial topoisomerase inhibitor

76095-16-4 MK-421 1984 hypertension angiotensin antagonist, ACE inhibitor

98319-26-7 MK-906 1985 cancer 5-alpha reductase inhibitor

103497-68-3 MK-963 1985 alopecia, benign prostatic

hypertrophy

5-alpha reductase inhibitor

76824-35-6 MK-208 1985 anti-ulcer histamine-h2-antagonist

126453-94-9 MK-927 1986 glaucoma carbonic anhydrase inhibitor

103420-77-5 MK-329 1986 obesity CCK antagonist

120443-16-5 MK-679 1987 anti-asthmatic leukotriene antagonist

115104-28-4 MK-571 1987 anti-asthmatic leukotriene d4 antagonist,

p-glycoprotein substrate

118414-82-7 MK-886 1988 inflammation leukotriene b4 antagonist

72702-95-5 MK-538 1989 diabetes complications aldose reductase inhibitor

130466 38 5 MK 467 1990 diabetes alpha-antagonist

129318-43-0 MK-217 1990 osteopathy chelator

113403-10-4 MK-233 1991 analgesic, anti-inflammatory cyclo-oxygenase inhibitor

134067-56-4 MK-434 1991 benign prostatic hypertrophy 5-alpha reductase inhibitor

119271-78-2 MK-417 1991 glaucoma carbonic anhydrase inhibitor

138199-64-1 MK-852 1991 vaso-occlusive disorders fibrinogen receptor antagonist, gpiia/iiia

antagonist, rgd-mimetic

145202-66-0 MK-462 1992 migraine 5-HT1d agonist

124750-99-8 MK-954 1992 vascular disease angiotensin antagonist

135947-75-0 MK-287 1992 atherosclerosis platelet-activating factor antagonist

123997-26-2 MK-397 1993 antihelmintic

147030-01-1 MK-591 1993 inflammation leukotriene b4 antagonist, flap inhibitor

130693-82-2 MK-507 1994 glaucoma carbonic anhydrase II inhibitor

159752-10-0 MK-677 1994 frailty grh secretagogue

155569-91-8 MK-244 1995 pesticide GABA releaser

157810-81-6 MK-639 1997 AIDS HIV-1 protease inhibitor

151767-02-1 MK-476 1997 anti-asthmatic leukotriene antagonist

Table 1 (continued )
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atolo, 1998). This calculation serves to confirm that either

the physicochemical properties of the candidate are easily

within the acceptable range, or that the properties lie within a

difficult range that will require more than the average

pharmaceutics manning. We adapted this calculation to

create the simple bar chart in Fig. 1. It answers the chemist's

question of `̀ how much solubility do I need?'' The three

middle bars describe the most common clinical potency that

we encounter; namely that of 1 mg/kg. If the permeability is

in the middle range, as for the average heterocycle, then a

thermodynamic solubility of about 50 mg/ml at pH 6.5 or 7 is

required. If the permeability is low (as in a typical peptido-

mimetic) the solubility should be about 200 mg/ml. The bar

graph also nicely illustrates another point. It is very impor-

tant to provide data to one's audience in a familiar format. In

this particular example, the audience is a medicinal chemist

with a highly developed appreciation for graphical presenta-

tions and little tolerance or interest in mathematical presenta-

tions. Showing essentially the same data to our chemists in

an equation type format (a format that was quite suitable to

our pharmaceutical scientists' needs) was not at all effective

with our chemists.

7. Relative importance of poor solubility and

permeability

What is the relative importance of poor solubility and

poor permeability towards the problem of poor oral

Table 2

Merck candidate properties

MK-No. Patent MLOGP HBND MWT No. Alert

MK-125 1962 1.66 2 392.47 8 0

MK-351 1964 ÿ 1.72 5 211.22 5 0

MK-915 1966 2.18 1 251.22 6 0

MK-240 1966 4.14 1 263.39 1 0

MK-184 1966 4.41 0 315.87 1 0

MK-360 1966 1.53 1 201.25 3 0

MK-230 1966 4.37 0 277.41 1 0

MK-595 1966 3.01 4 303.14 3 0

MK-875 1967 0.74 9 244.65 9 0

MK-685 1967 1.32 6 257.68 8 0

MK-665 1967 3.96 1 330.86 2 0

MK-870 1967 0.67 8 229.63 8 0

MK-825 1968 3.42 1 370.84 5 0

MK-130 1968 4.29 0 275.4 1 0

MK-990 1968 5.07 2 626.02 4 1

MK-056 1968 ÿ 1.47 2 123.11 4 0

MK-647 1968 3.99 2 250.2 3 0

MK-835 1968 3.52 1 274.25 4 0

MK-905 1969 2.08 2 302.36 6 0

MK-410 1969 3.61 1 369.49 4 0

MK-185 1969 3.99 1 415.8 5 0

MK-955 1969 ÿ 0.68 2 138.06 4 0

MK-486 1970 0.53 6 226.23 6 0

MK-650 1970 3.71 2 530.67 7 0

MK-534 1971 1.49 1 213.16 3 0

MK-436 1971 1.08 0 250.26 7 0

MK-316 1971 5 0 388.5 2 0

MK-306 1971 0.79 4 427.46 10 0

MK-485 1971 0.53 6 226.23 6 0

MK-282 1971 2.6 1 458.52 7 0

MK-251 1972 5.42 2 311.32 1 0

MK-641 1972 ÿ 2.68 3 107.08 3 0

MK-075 1972 1.96 2 302.25 9 0

MK-191 1972 2.1 3 463.56 9 0

MK-188 1972 2.46 3 322.4 5 0

MK-356 1973 2.1 3 463.56 9 0

MK-231 1973 3.89 1 356.42 3 0

MK-910 1974 2.03 0 221.19 5 0

MK-473 1974 3.66 1 357.24 4 0

MK-302 1975 3.39 2 277.69 5 0

MK-621 1975 ÿ 2.52 8 1145.36 22 1

MK-447 1975 3.04 3 305.16 2 0

MK-196 1975 3.65 1 365.22 4 0

MK-401 1976 0.01 6 380.66 7 0

MK-950 1976 0.28 2 316.42 7 0

MK-761 1976 0.68 2 249.32 5 0

MK-936 1977 1.75 3 873.1 14 1

MK-160 1977 5.94 0 427.54 1 0

MK-787 1977 0.6 4 299.35 7 0

MK-521,

MK-522

1980 1.11 5 405.5 8 0

MK-422 1980 1.18 3 348.4 7 0

MK-819 1980 3.02 3 422.57 6 0

MK-803 1980 3.8 1 404.55 5 0

MK-801 1980 3.51 1 221.31 1 0

MK-301 1980 0.35 9 806.97 15 1

MK-212 1981 0.67 1 198.66 4 0

MK-733 1981 4 1 418.58 5 0

MK-933 1982 1.35 3 835.05 14 1

MK-678 1982 0.62 9 808.99 15 1

MK-711 1983 4.1 1 333.43 3 0

MK-791 1983 ÿ 1.35 5 358.46 7 0

MK-No. Patent MLOGP HBND MWT No. Alert

MK-366 1983 1.16 2 319.34 6 0

MK-421 1984 1.64 2 376.46 7 0

MK-906 1985 3.65 4 372.56 6 0

MK-963 1985 4.26 1 371.57 3 0

MK-208 1985 ÿ 0.18 8 337.45 9 0

MK-927 1986 ÿ 0.27 3 338.47 6 0

MK-329 1986 3.21 2 408.46 6 0

MK-679 1987 4.52 1 515.1 5 1

MK-571 1987 4.52 1 515.1 5 1

MK-886 1988 5.6 1 472.1 3 0

MK-538 1989 3.78 1 391.2 5 0

MK-467 1990 1.08 2 418.52 8 0

MK-217 1990 ÿ 0.98 7 249.1 8 0

MK-233 1991 3.23 1 206.29 2 0

MK-434 1991 4.48 1 377.53 3 0

MK-417 1991 0.78 1 337.48 5 0

MK-852 1991 ÿ 1.28 8 577.71 13 1

MK-462 1992 2.65 1 269.35 5 0

MK-954 1992 4.28 2 422.92 7 0

MK-287 1992 0.92 1 510.61 9 0

MK-397 1993 1.53 3 900.13 15 1

MK-591 1993 5.23 1 587.19 5 1

MK-507 1994 ÿ 0.57 3 324.44 6 0

MK-677 1994 1.18 3 528.68 9 0

MK-244 1995 1.59 3 859.07 14 1

MK-639 1997 1.72 4 613.81 9 0

MK-476 1997 5.66 2 586.2 4 1

Table 2 (continued )

C.A. Lipinski / Journal of Pharmacological and Toxicological Methods 44 (2000) 235±249242



Table 3

Pfizer candidate properties

Synthesis sequence MLOGP HBND MWT No. Alert

1 1.83 2 277 5 0

2 1.73 3 246 4 0

3 2.29 0 206 2 0

4 2.82 2 329 7 0

5 2.58 4 167 3 0

6 3.43 2 389 9 0

7 2.57 0 220 2 0

8 2.05 2 383 9 0

9 2.66 1 497 6 0

10 1.64 1 409 6 0

11 ÿ 0.31 2 337 7 0

12 0.00 2 331 7 0

13 0.25 2 345 7 0

14 2.37 1 332 5 0

15 3.94 2 286 3 0

16 2.77 0 227 3 0

17 1.74 0 308 7 0

18 7.30 2 667 4 1

19 3.75 1 237 1 0

20 3.03 0 241 3 0

21 1.36 2 159 2 0

22 1.15 1 202 4 0

23 1.42 1 223 4 0

24 2.08 3 492 10 0

25 1.05 3 430 7 0

26 1.11 7 449 11 1

27 1.70 3 394 6 0

28 8.09 2 585 2 1

29 1.05 8 492 13 1

30 1.33 3 451 8 0

31 3.52 1 413 5 0

32 1.68 0 293 6 0

33 4.58 2 527 5 1

34 1.41 1 329 8 0

35 3.11 5 667 10 0

36 1.93 4 373 9 0

37 0.77 3 466 8 0

38 ÿ 0.57 0 245 2 0

39 1.47 5 389 10 0

40 5.27 1 451 3 0

41 4.05 2 385 6 0

42 1.98 5 424 10 0

43 1.58 9 532 16 1

44 1.47 6 388 10 0

45 1.05 1 284 6 0

46 3.97 1 383 6 0

47 2.55 1 275 8 0

48 1.59 1 266 5 0

49 1.37 2 202 4 0

50 2.34 2 343 10 0

51 1.64 5 562 14 1

52 3.89 2 438 5 0

53 1.30 2 904 16 1

54 0.34 2 875 16 1

55 0.16 1 233 6 0

56 1.16 2 247 4 0

57 5.18 2 545 4 1

58 5.35 1 453 3 0

59 1.37 5 761 15 1

60 1.30 2 847 15 1

61 1.51 0 347 8 0

62 4.54 2 333 2 0

Synthesis sequence MLOGP HBND MWT No. Alert

63 0.51 2 889 16 1

64 3.53 1 280 2 0

65 0.65 1 169 2 0

66 0.91 5 869 15 1

67 2.19 4 204 6 0

68 2.15 2 317 9 0

69 3.89 2 438 5 0

70 0.40 4 611 14 1

71 4.08 1 452 5 0

72 ÿ 0.24 3 782 16 1

73 4.76 1 306 1 0

74 0.61 1 183 4 0

75 5.35 1 453 3 0

76 0.95 1 401 8 0

77 0.04 5 333 7 0

78 1.52 1 242 5 0

79 4.13 3 377 3 0

80 1.77 3 760 15 1

81 2.67 1 241 5 0

82 0.89 4 776 14 1

83 0.93 5 222 6 0

84 2.48 0 294 5 0

85 0.89 4 776 14 1

86 ÿ 0.28 3 262 7 0

87 0.77 1 377 10 0

88 1.30 3 753 17 1

89 1.24 3 681 15 1

90 2.85 6 307 7 0

91 1.52 1 417 10 0

92 0.14 5 749 14 1

93 1.94 1 374 7 0

94 1.03 2 376 9 0

95 1.72 2 262 5 0

96 2.49 1 345 6 0

97 0.14 5 749 14 1

98 2.81 1 245 5 0

99 0.02 4 699 12 1

100 1.34 1 447 10 0

101 1.95 2 321 5 0

102 2.39 4 292 6 0

103 1.77 1 480 9 0

104 1.56 1 462 10 0

105 2.67 4 312 6 0

106 1.80 2 927 16 1

107 0.63 2 349 6 0

108 4.03 2 299 4 0

109 3.05 1 430 6 0

110 2.34 2 339 5 0

111 2.58 1 353 4 0

112 1.99 2 291 4 0

113 3.27 1 419 6 0

114 2.60 1 316 5 0

115 0.24 5 401 10 0

116 2.09 1 371 6 0

117 1.86 2 275 4 0

118 2.82 1 369 6 0

119 3.24 0 400 7 0

120 3.02 0 384 7 0

121 2.60 2 316 5 0

122 4.11 0 416 4 0

123 3.24 1 386 7 0

124 1.59 4 512 10 0

125 2.29 0 215 2 0

Table 3 (continued )
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Synthesis sequence MLOGP HBND MWT No. Alert

126 2.93 1 387 6 0

127 2.60 2 316 5 0

128 2.10 1 398 5 0

129 3.22 1 379 5 0

130 1.13 2 252 5 0

131 1.79 4 633 11 1

132 3.05 2 466 6 0

133 2.80 1 420 6 0

134 3.66 0 407 5 0

135 2.20 3 355 5 0

136 3.71 1 413 5 0

137 2.20 3 355 5 0

138 ÿ 4.77 4 313 7 0

139 1.92 3 400 6 0

140 3.26 1 402 7 0

141 1.15 1 362 7 0

142 2.10 0 329 7 0

143 ÿ 0.51 5 283 8 0

144 3.39 1 407 5 0

145 3.52 0 380 4 0

146 4.33 0 493 5 0

147 4.06 1 436 5 0

148 5.25 1 420 3 0

149 4.74 0 503 5 1

150 0.37 2 275 5 0

151 2.81 3 416 7 0

152 3.38 0 389 4 0

153 3.75 0 491 6 0

154 2.77 2 296 3 0

155 2.59 2 373 5 0

156 2.19 3 327 4 0

157 ÿ 2.54 17 788 21 1

158 2.51 0 443 8 0

159 2.33 3 661 10 0

160 3.21 2 476 6 0

161 4.14 1 417 8 0

162 2.17 3 366 5 0

163 5.35 1 461 3 0

164 4.11 2 429 4 0

165 4.11 2 429 4 0

166 3.86 0 451 7 0

167 3.09 1 405 6 0

168 2.15 4 647 10 0

169 4.98 1 471 3 0

170 3.63 0 391 4 0

171 3.09 1 405 6 0

172 1.10 3 404 6 0

173 3.91 1 544 9 0

174 ÿ 0.09 7 755 14 1

175 4.91 1 447 3 0

176 1.78 5 559 11 1

177 3.93 1 381 5 0

178 3.52 1 388 4 0

179 ÿ 0.24 5 289 8 0

180 1.28 2 321 5 0

181 2.79 2 380 4 0

182 4.04 0 379 3 0

183 0.89 2 1064 20 1

184 2.69 4 697 9 0

185 4.22 1 439 5 0

186 2.87 2 351 7 0

187 3.59 1 447 5 0

188 3.73 2 378 4 0

Table 3 (continued )

Synthesis sequence MLOGP HBND MWT No. Alert

189 2.88 1 340 4 0

190 1.83 1 321 6 0

191 2.42 3 437 8 0

192 4.72 2 455 4 0

193 3.31 1 424 6 0

194 2.16 4 440 8 0

195 2.67 2 579 7 0

196 3.90 3 527 7 0

197 2.62 2 587 7 0

198 2.09 2 395 8 0

199 3.23 1 355 5 0

200 1.35 4 723 12 1

201 2.49 3 398 5 0

202 4.63 1 388 3 0

203 2.89 0 339 5 0

204 4.53 1 375 5 0

205 4.01 3 505 7 0

206 3.99 1 394 5 0

207 4.41 2 428 4 0

208 4.41 2 428 4 0

209 2.38 2 609 8 0

210 2.07 2 617 8 0

211 4.25 3 533 7 1

212 0.77 2 314 6 0

213 3.18 7 1029 18 1

214 4.49 2 417 5 0

215 3.70 2 486 5 0

216 3.32 3 445 5 0

217 ÿ 1.84 18 848 22 1

218 1.78 3 359 5 0

219 4.24 0 360 5 0

220 3.71 4 549 9 0

221 1.81 2 298 5 0

222 4.57 0 327 3 0

223 1.97 3 416 7 0

224 3.18 2 481 5 0

225 2.72 3 444 6 0

226 ÿ 0.11 8 1029 23 1

227 0.12 7 1035 20 1

228 3.73 2 378 4 0

229 3.92 0 339 5 0

230 2.29 1 326 8 0

231 0.58 5 331 7 0

232 4.71 1 414 3 0

233 4.78 1 579 6 1

234 5.41 2 477 6 0

235 1.23 4 345 7 0

236 0.99 5 331 7 0

237 2.90 1 393 7 0

238 1.55 1 269 3 0

239 3.23 0 367 6 0

240 0.84 5 458 8 0

241 0.05 3 443 10 0

242 4.09 0 313 5 0

243 2.43 2 330 5 0

244 2.20 2 316 5 0

245 4.57 1 326 3 0

246 1.92 3 398 6 0

247 1.42 1 204 3 0

248 4.56 0 463 5 0

249 4.42 2 482 5 0

250 2.14 3 412 6 0

251 3.95 1 380 5 0

Table 3 (continued )
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absorption? In a global sense, the relative importance may

depend at least in part on an organization's research

approach. Specifically, it could depend on how leads are

generated. Two extremes can be identified. In one

extreme, leads are generated from an empirical HTS,

and, in the other extreme, leads are generated in some

type of `̀ rational drug design'' process. This could

encompass a variety of techniques ranging from modifi-

cation of a known compound to an approach where

structural information exists as to target binding require-

ments, for example from target X-ray or NMR studies, or

by analogy from target mechanistic information, or from

information on similar previous targets. Whatever the mix

of techniques, the hallmark is that the approach is

`̀ rational'' in the sense that it is not based on empirical

screening for in-vitro activity. Poor solubility will be

viewed as the predominant problem if lead generation is

heavily dependent on HTS. Poor permeability will be

viewed as the predominant problem if leads arise from

`̀ rational drug design.''

7.1. Merck and Pfizer clinical candidates

An analysis of published data on Merck advanced

clinical candidates and the unpublished data on Pfizer

early candidates illustrates the physical property trends

with time that could result from these two extremes in

lead generation. The limitations of this type of analysis

should be kept in mind. The trends in clinical candidate

profiles from two different research organizations are

being compared without assurance that `̀ apples are

being compared with apples.'' For example, in the

Pfizer clinical candidate data set, the criteria for candi-

date nomination evolved over a 30-year period, and this

evolution in criteria might have affected the time-wise

calculated property profiles. While one can identify the

Merck clinical candidates over a 30-year period, it is

not possible for this author to assess that organization's

cultural preferences. For example, over the 30-year

history of the Merck candidates, did the relative impor-

tance assigned to good permeability and good solubility

change, and was the Merck relative importance the same

as Pfizer? Despite these caveats, it is tempting to try to

assign causality to the property trends with time.

Pfizer, at its Groton laboratories, has had a heavy reliance

on HTS since 1987, and a more limited focus on `̀ rational

drug design.'' Merck has historically had a heavy reliance

on `̀ rational drug design'' with significant efforts into

combinatorial chemistry and high throughput synthesis only

gradually increasing over the last 8 years.

Table 1 shows the publicly available data for Merck

advanced clinical candidates. From a Chemical Abstracts

Scifinder search, Merck candidates were identified by

Chemical Abstracts registry number and by MK num-

Table 3 (continued )

Synthesis sequence MLOGP HBND MWT No. Alert

252 1.54 3 297 5 0

253 4.87 1 469 4 0

254 3.35 0 391 4 0

255 1.52 3 506 9 0

256 4.34 0 379 3 0

257 4.01 3 453 6 0

258 1.52 3 506 9 0

259 4.11 0 448 4 0

260 2.47 2 357 5 0

261 7.07 0 627 6 1

262 1.75 3 404 7 0

263 3.67 2 380 5 0

264 1.43 2 323 6 0

265 ÿ 4.43 8 5773 12 1

266 1.81 3 611 10 0

267 4.56 0 463 5 0

268 1.75 3 409 7 0

269 4.86 2 498 6 0

270 1.78 2 358 8 0

271 2.06 3 466 9 0

272 ÿ 0.04 7 806 15 1

273 1.67 5 483 8 0

274 0.13 5 820 15 1

275 1.1 1 211 3 0

276 6.69 0 600 6 1

277 6.88 0 615 6 1

278 2.39 1 469 7 0

279 3.04 2 311 4 0

280 1.38 3 410 8 0

281 1.44 2 324 6 0

282 3.08 4 532 8 0

283 2.71 2 359 5 0

284 3.52 4 337 6 0

285 2.19 4 320 7 0

286 1.84 3 436 8 0

287 3.67 1 227 1 0

288 1.86 2 842 17 1

289 4.21 1 300 2 0

290 1.33 5 529 13 1

291 4.1 1 480 5 0

292 2.12 3 373 6 0

293 5.01 2 537 4 1

294 4.54 1 430 5 0

295 2.27 3 341 6 0

296 2.03 2 856 17 1

297 4.77 2 603 6 0

Fig. 2. Upwards molecular weight trend in Merck advanced candidates.
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ber. The intended therapy and mechanism of action are

also listed. The year of the earliest Merck patent

corresponding to the candidate is also listed. MK

numbers exist that do not have corresponding patents.

These appear to be mostly important biological stan-

dards and were not used in this analysis. Table 2 shows

the `̀ rule of five'' calculated properties for the Merck

candidates. Pfizer early candidates were taken from our

historical list of candidate alert notices issued when a

candidate is first identified, or from the list of candi-

dates that were formally recommended for development.

Table 3 shows the `̀ rule of five'' calculated properties

for the Pfizer candidates. Unlike Merck, and some other

pharmaceutical companies, Pfizer does not identify clin-

ical candidates by a new or changed code number, and

the list of candidates is not in the public domain. The

year of the candidate is the year of the earliest patent

for the Merck candidates, and the time sequence is the

order of synthesis for the Pfizer early candidates. Only

candidates from Pfizer's US Groton laboratories were

used because the method of historical lead generation in

Pfizer's UK laboratories is quite different and is not

historically biased towards HTS. The number of candi-

dates differs between Merck and Pfizer with more

compounds listed for Pfizer. This does not reflect on

research productivity, but, rather, the fact that the Pfizer

candidates were identified from the historical record of

those recommended for advancement at the earliest

research stage and before any significant attrition had

occurred. The Merck list is for those candidates at a

more advanced stage.

7.2. The trend in molecular weight

Both the Merck advanced candidates and the Pfizer

early candidates show an upward molecular weight trend

with time. Fig. 2 illustrates the trend towards higher

molecular weight in the Merck clinical candidates. The

x-axis is the date of the earliest Merck patent covering the

MK number candidate. Although there is considerable

scatter, there is clearly an increase in molecular weight

with time.

Fig. 3 illustrates the increase in molecular weight with

time for Pfizer clinical candidates. The time sequence is

roughly the same as for the Merck candidates and the x-

axis corresponds to the date of candidate nomination.

These are candidates at a very early stage, so there are

more points in this graph than for the Merck advanced

candidates. The main point of Figs. 2 and 3 is that the

upward trend in molecular weight is seen in clinical

candidates from companies with very different research

strategies. In the case of Pfizer's discovery research,

there is a very heavy reliance on leads from HTS with

synthetic follow-up and compound optimization using

small, highly interdisciplinary approach teams. In the

case of Merck's discovery research (over the time frame

of this analysis), there is almost no reliance on leads

from HTS. Discovery is mostly a mixture of the tech-

Fig. 3. Upwards molecular weight trend with time in Pfizer, Groton candidates.

Fig. 4. No increase in lipophilicity in Merck advanced candidates.
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niques of `̀ rational drug design'' with large teams

tackling targets that are sometimes very difficult from

a physicochemical and PK/PD perspective.

7.3. The trend in lipophilicity

In contrast to molecular weight, there is no increase in

lipophilicity with time in Merck advanced candidates

(Fig. 4), but there is an upward lipophilicity trend with

time in Pfizer early candidates (Fig. 5). Why is there no

increase in lipophilicity with time among Merck candidates?

HTS does not influence a `̀ rational drug design'' approach

to drug discovery, and, therefore, there is no obvious trend

towards increased lipophilicity. Among candidates from

Pfizer's discovery research, there is an increase in lipophi-

licity with time. In recent years, about 50% of candidates

from Pfizer have resulted from leads that were originally

found by HTS. A drug discovery strategy that depends

heavily on HTS will exhibit an inherent bias towards

increased lipophilicity in drug leads and, to a lesser extent,

in clinical candidates. The reason is based on fundamental

medicinal chemistry principles. The most reliable method to

increase in-vitro potency is with appropriately positioned

lipophilic functionality. As a result, an HTS screen will in

general select for hits that are more lipophilic (and larger). It

should be noted that this occurred in Groton, even though

our large screening library is overall very drug-like in

calculated properties. One might anticipate an even greater

trend towards higher lipophilicity in leads, if the library

screened by HTS contained significant numbers of combi-

natorial chemistry compounds with high molecular weight

or lipophilicity. In the very early days of HTS, many of our

hits from HTS screens were in fact larger and more

lipophilic. In a later time period, we minimized this problem

by filtering HTS hits to remove those compounds with the

least desirable drug-like properties.

7.4. The trend in H-bonding

The H-bond acceptor trend with time differs between the

two companies, but now it is the Merck candidates that

show a trend towards increasing number of H-bond accep-

tors (Fig. 6). This trend is what one might expect given the

strong focus in `̀ rational drug design'' in recent years on

peptido-mimetic like structures. Peptido-mimetics typically

interact with three (or even four) peptide structural elements

often through H-bonding arrays. By way of contrast there is

no H-bond acceptor trend with time in Pfizer, Groton

candidates (Fig. 7). The Pfizer, Groton screening library

contains relatively few peptido-mimetic like structures and

there is nothing in the HTS screening process to select for

leads with high H-bond acceptor or donor number.

7.5. Understanding the trends

Merck and Pfizer exemplify two quite different

approaches to drug discovery. Merck's approach is more

based on a mixture of the techniques of `̀ rational drug

design,'' while Pfizer's is biased more towards empirical

Fig. 5. Upwards lipophilicity trend with time in Pfizer candidates.

Fig. 6. Increasing H-bond acceptor trend with time in Merck candidates.
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HTS screening. Both approaches are successful in drug

discovery, and both have led to increased molecular weight

in recent years. The trend towards increased molecular

weight worsens both aqueous solubility and intestinal

permeability. The structure-based approach increases H-

bond count for both acceptors and donors. This trend tends

to worsen permeability, but has no consistent effect on

solubility. For example, our extensive turbidimetric aqu-

eous solubility screening shows that more than half of poor

aqueous solubility (Q 20 mg/ml solubility in pH 7 phos-

phate buffer) is due to H-bonding considerations. The HTS

screening-based approach tends towards producing more

lipophilic leads, and could result in somewhat more

lipophilic candidates (depending on the extent of property

improvement in lead optimization). This trend towards

increased lipophilicity, in general, worsens aqueous solu-

bility, but has very little effect on permeability (provided

the lipophilicity is not extremely high). To summarize, the

approach used in lead generation leads to quite different

physicochemical profiles in `̀ rational'' as opposed to HTS-

based discovery approaches. In `̀ rational'' approaches, one

might be working on enzyme inhibitors or peptido-

mimetics. Potency enhancement usually involves probing

for at least three binding sites, for example in the P1, P10,
and P2 pocket. The binding pocket is often elongated.

These considerations tend to lead towards larger size. H-

bonding count tends to go up because one is often trying

to satisfy multiple receptor H-bonding interactions. Often

the natural ligand is a peptide. There is not much selection

pressure for lipophilicity (log P) to increase because the

lead generation is structure based Ð a lot is known about

the target. It is not an empirical search for potency against

a target as is HTS. Lipophilicity does not play a role in

discovering the lead series as it does in the HTS-based

discovery approach. Large size and increased H-bonding

translates to a poorer permeability profile. HTS-based

approaches tend to bias towards larger size and higher

lipophilicity because these are the parameters whose

increase is globally associated with an improvement of

in-vitro activity. Larger size and higher lipophilicity trans-

late to poorer aqueous solubility. Fortunately, for HTS-

based approaches, this bias can be corrected by appropriate

computational or experimental filtering based on a com-

pound's physicochemical properties.

8. Conclusions

This article has focused on the themes of chemistry

space and on the information content found in small data

sets. Against these themes are portrayed the concepts of

maximal chemical diversity in combinatorial chemistry and

the differences in dimensionality between ADME and

pharmacological screening. The author argues that drugs

are not uniformly distributed in chemical space, and that

true `̀ maximal chemical diversity'' is unobtainable in an

experimental setting. The proposition is made that ADME

is simpler in chemistry space so that simple rules and

filters work, but that paradoxically SAR for large ADME

data sets is harder to predict because of the multi-mechan-

ism problem. An examination of the trend with time for

molecular weight, H-bonding properties, and lipophilicity

among Merck and Pfizer clinical candidates suggests a

causal link to the method of lead generation. A trend

towards higher molecular weight and higher H-bonding

from a Merck-like `̀ rational drug design'' approach tends

towards poorer permeability as target complexity increases.

A trend towards higher molecular weight and higher

lipophilicity from a Pfizer-like `̀ HTS'' approach tends

towards poorer solubility as target complexity increases.

Both types of approaches are successful in drug research,

but the differences likely could dictate differences in the

Fig. 7. No H-bond acceptor trend with time in Pfizer, Groton candidates.
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relative importance of permeability vs. solubility screening

in obtaining orally active compounds.
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