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Abstract

Quantum mechanics (QM) methods provide a fine description of receptor-ligand interactions and of
chemical reactions. Their use in drug design and drug discovery is increasing, especially for complex
systems including metal ions in the binding sites, for the design of highly selective inhibitors, for the
optimization of bi-specific compounds, to understand enzymatic reactions, and for the study of covalent
ligands and prodrugs. They are also used for generating molecular descriptors for predictive QSAR/QSPR
models and for the parameterization of force fields. Thanks to the continuous increase of computational
power offered by GPUs and to the development of sophisticated algorithms, QM methods are becoming
part of the standard tools used in computer-aided drug design (CADD). We present the most used QM
methods and software packages, and we discuss recent representative applications in drug design and drug
discovery.
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1 Introduction

It has almost been a century after publishing the famous quantum

mechanical (QM) equation H ψ r
!� �

¼ E ψ r
!� �

of E. Schrödinger

and more than 20 years since the Nobel Prize in Chemistry was
awarded “to Walter Kohn for his development of the density-
functional theory and to John Pople for his development of compu-
tational methods in quantum chemistry.” Today QM calculations
are used routinely in almost every aspect concerning the computer-
aided drug design (CADD) techniques. Initially, QM calculations
were mainly and broadly applied to chemistry problems, due to
smaller system size. With gradual increase of supercomputers’ per-
formance and graphics processing unit (GPU) implementations,
QM calculations were performed for a variety of complex chemical,
biochemical, and biomolecular systems. Applications in CADD
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include calculations at the following level of theory: semi-empirical
quantum mechanical (SEQM) methods, Hartree-Fock
(HF) approach, post-Hartree-Fock (pHF) methods, and density
functional theory (DFT) methods. Hybrid quantum mechanics/
molecular mechanics (QM/MM) methods are also widely used in
CADD techniques.

2 Methods and Software Packages

2.1 Methods Solving the Schrödinger equation, even for very simple systems, has
led to the development of numerous approximations implemented
in different QM methods which can describe all systems of interest
today, such as organic, bioorganic, inorganic molecules and metal
ions. Depending on the theory used, and the level of the simplifi-
cation (the number and type of approximations), as aforemen-
tioned, we may summarize all QM methods into four major
groups: SEQM, HF, pHF, and DFT. Although a specific combina-
tion, QM/MM approaches always include at least one of the four
groups of QMmethods. After finding the approximate solutions of
the Schrödinger equation, we can obtain different measurable
properties for the studied system [1–3].

The fastest and the most approximated approaches are SEQM
methods. Around three orders of magnitude faster than HF calcu-
lations, they ignore some terms and replace others by empirical
parameters to fit experimental heats of formation, dipole moments,
and geometries. The most used SEQM are NDDO,MNDO, AM1,
SAM1, RM1, PM3, PDDG/PM3, PDDG/MNDO, PM6, PM7,
and OM2. Some of them were developed by John Pople, then
many by Michael Dewar and lately by James J. P. Stewart group.
SEQM undergo frequent improvement and revival and therefore
stay quite popular on the scene [4–13].

Next in the order of increasing complexity (slow performance/
high accuracy) is the HFmethod. The main approximation (among
several others) assumes that each electron interacts with an average
field of all other electrons in the system, thus reducing a many-body
to a one-body problem. QM methods solve the Schrödinger equa-
tion representing the electron wave function by a set of finite
number functions called basis functions (basis set). The quality of
the solution is improved by a higher number of basis set functions.
Usually for small drug molecules, we can get reasonable geometries
with two basis functions for each valence electron and one for the
core electrons. The most used are Pople basis sets, i.e., 3-21G,
6-31G, or 6-311G, where we may add also for some cases polariza-
tion functions (generally marked with ∗) and/or diffuse functions
(denoted with +) study [1–3, 14, 15]. Polarization and diffuse-type
functions could be added on heavy atoms and/or on hydrogens.
Other widely used basis sets are developed by Dunning and
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co-workers (correlation-consistent basis sets) [16–18]. Dunning
series are noted as cc-pVNZ, where N could be D, T, Q, 5, 6,...
(D is double, T is triple, and so on) and “cc-p” stands for “correla-
tion-consistent polarized” and the V for valence basis sets. Diffuse
function can also be added to Dunning basis set and denoted with
“aug-” prefix. We should define basis sets also for all pHF and DFT
methods. The minimal basis set for each SEQM is defined by the
method itself; that is why basis sets for SEQM are not explicitly
specified.

Post-HF methods [1–3] were developed to overcome the main
approximation in the HF by adding electron correlation. These
QM methods are more accurate compared to HF methods but
they are more computationally expensive by orders of magnitude,
compared to HF and DFT. The simplest way to correct HF is the
second order of Møller-Plesset perturbation theory method or
MP2 [19], and it is the most used pHF method due to its accept-
able cost. However, the accuracy of MP2 method is considered
worse compared to DFT methods, despite the slower performance.
Coupled-cluster pHF method presents some of the most accurate
calculations for small molecules [20]. The pHF method CCSD
(T) known as the gold standard in quantum chemistry [21] is an
abbreviation for “coupled-cluster calculations with single, double,
and perturbative treated triple excitations.”

DFT method study (as it is abbreviated in the name of the
theory) [1–3, 22, 23] defines the properties of a many-electron
system as functions of another function (functionals); this function
is the electron density, and it is dependent from the three Cartesian
coordinates. In the HF methods, the wave function (Ψ in the
Schrödinger equation) also depends on three coordinates, but for
each electron in the system. A number of DFT functionals have
been developed, e.g., BP86, PBE, M06-L, M06-2X, B3LYP [24–
28], and many others. One of the most used functionals for organic
molecules is the hybrid B3LYP: Becke three-parameters is the
exchange functional, and Lee, Yang, and Parr is the correlation
functional. The three Becke parameters are derived from a fitting
to a set of atomization energies, ionization potentials, proton affi-
nities, and total atomic energies [26].

The main question for a scientist in order to decide which QM
method to use for a CADD problem is the computational cost/
effectiveness ratio that has to apply to a particular system of interest.
Small drug molecule partial atomic charges, geometries and/or
energies of different conformations, preferred tautomeric states in
solution, covalent bonds, and electron transfer issues need to be
evaluated according to the desired accuracy, and each could be
solved by different QM method.
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2.2 Software

Packages

In the past three or more decades, numerous QM software was
developed with different level of theory and basis set implementa-
tion. In general, we can sort them by included methods. Most of
the QM software now includes different combinations of SEQM,
HF, pHF, and DFT methods. The use of a specific software is also
related to its license: academic, commercial, and free and open
source. Academic software license is possible to be acquired upon
request, free of charge for academic institutions. Table 1 shows
general overview of 20 of the most used software packages for
QM calculations. In the past 10 years, company such as NVIDIA
introduced video cards for scientific calculations. Molecular model-
ing calculations on GPU, including QM, have been gaining interest
in the recent years due to the accelerated performance compared to

Table 1
Twenty of the most used software for QM calculations

Software package SEQM HF pHF DFT License type GPU Internet link

ADF Yes Yes No Yes Comm Yes www.scm.com

AMPAC Yes No No No Acad No www.semichem.com

CASTEP No Yes No Yes Acad/Comm No www.castep.org

CP2K Yes Yes Yes Yes FOSS Yes www.cp2k.org

DIRAC No Yes Yes Yes Acad No www.diracprogram.org

GAMESS (UK) Yes Yes Yes Yes Acad/Comm Yes www.cfs.dl.ac.uk

GAMESS (US) Yes Yes Yes Yes Acad Yes www.msg.chem.iastate.edu/gamess

Gaussian Yes Yes Yes Yes Comm Yes www.gaussian.com

HyperChem Yes Yes Yes Yes Comm No www.hyper.com

Jaguar No Yes Yes Yes Comm No www.schrodinger.com/jaguar

MOLCAS Yes Yes Yes Yes Acad/Comm Yes www.molcas.org

MOLPRO No Yes Yes Yes Comm Yes www.molpro.net

MOPAC Yes No No No Acad/Comm Yes www.openmopac.net

MPQC No Yes Yes Yes FOSS No www.mpqc.org

NWChem No Yes Yes Yes FOSS Yes www.nwchem-sw.org

Q-Chem Yes Yes Yes Yes Comm Yes www.q-chem.com

QSite No Yes Yes Yes Comm No www.schrodinger.com/QSite

Spartan Yes Yes Yes Yes Comm No www.wavefun.com

TURBOMOLE No Yes Yes Yes Comm No www.turbomole.com

VASP No Yes Yes Yes Acad/Comm Yes www.vasp.at

License types include academic, commercial, and FOSS (free and open-source software)
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the standard CPU based. Figure 1 displays the performance of
some of the best GPUs per year for the last decade, showing
approximately 40-fold increase.

3 Application Domains

Computer-aided drug design (CADD) is commonly integrated in
drug discovery and drug design processes [29–31]. The use of QM
methods in CADD has increased during the last decade, especially
due to breakthrough in computer hardware and the development
of new algorithms [32–34]. QM methods provide accurate estima-
tion of energies, electronic polarization effects, charge transfer,
metal coordination, and bond formation and cleavage [35]. They
allow reliable modeling and simulation of complex ligand-receptor
systems, thus opening new possibilities for the study of difficult
therapeutic targets and for the efficient development of optimized
and selective drugs. We present and discuss diverse applications of
QM in drug discovery and drug design, considering one or few
examples by domain. For each application type, other examples are
reported in Table 2.

3.1 QM/MM MD Some of the most powerful approaches in the computational chem-
istry and in the drug design for studying protein-ligand and
DNA-ligand interactions are the hybrid QM/MM methods and
in particular QM/MM MD simulations [36, 37]. Together with

Fig. 1 Performance of GPUs, from year 2008 to 2018, in GFLOPS (109 floating point operations per second), for
FP32 single-precision floating point calculations. The GPU models are shown above the corresponding dots. A
38-fold increase in computational power has been observed over 10 years. Data taken from https://www.
techpowerup.com/gpu-specs/
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the standard MD simulations, they represent two computationally
expensive approaches in CADD, which recently could significantly
benefit from the implementation of the GPU software and
hardware.

Besides the routine use of QM methods such as calculating
more accurate partial atomic ligand charges (like RESP method,
[38]) for classical MD simulations in SBDD [39–41], in the past
two decades, we have seen more computational chemists using
QM/MM simulations [42–44]. In general, scientists treat a limited
but important space of the protein (or DNA)-ligand complexes
with higher accuracy at QM (but also SEQM) level. This important
area could include the ligand (small peptide or small molecule) in
case of a complex and the surrounding close environment—closest
residues in a receptor pocket. The area can be an enzyme’s active
site where enzymatic cleavage reactions happen or a site with a
covalent bonding possibility [45] or simply a pocket where non-
covalent small drug molecules bind. The rest of the system, which is
a huge part, is treated at a less accurate level using a classical force
field (FF), the same as the ones in standard MD simulations

Table 2
Examples of various applications of QM-based methods in drug design and drug discovery

Applications Papers

QM/MM MD [90–92]

Parametrization of force fields [93–96]

Protein structure refinement [97–100]

Virtual screening [101–103]

Protein-ligand affinity prediction [104–109]

Identification of key drivers of protein-ligand binding [110–113]

Protomer/tautomer states [114–118]

Cation-π and π-π interactions [119–122]

Bioactive conformations [123–126]

Bi-specific inhibitors [127–129]

Covalent compounds [130–134]

Prodrugs [135–139]

Reaction mechanisms [140–146]

Drug metabolism [147–150]

QSAR models [151–153]

Molecular quantum similarity [154, 155]

Enzyme design [156–159]
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[36, 37, 42–44]. In a recent study [46], on large QM/MM calcu-
lations, authors provide a way for a rational selection of the QM
region sizes for the next generation of QM/MM studies of
enzymes.

Recently, hybrid methods have steadily increasing impact on
the drug discovery [47–49]. In the QM/MM study of HIV-1
protease [50], the authors explored the effect of different confor-
mations of the enzyme on its catalytic ability. Chen and co-authors
[51] apply QM/MM MD simulations combining DFT and
SEQM—AM1d, RM1, PM3, and PM6 methods—to study the H
bonding and other interactions of inhibitors with trypsin. Their
results show that the accuracy of treating the hydrogen bonding
using QM/MM MD simulations of PM6 can compete with the
DFT QM/MM MD simulations. Also Schirmeister et al. [52] in a
study of covalent inhibitors showed that the hybrid approach was
accurate enough to successfully design reversible covalent inhibi-
tors for rhodesain. QM/MM calculations could generate electro-
static potential maps of the binding sites at QM level, thus helping
to determine the protonation states of important residues and also
to analyze reaction mechanisms in drug discovery targets
[53]. Detailed review shows the applications of one of the most
used hybrid method ONIOM including its applications for the
structure-based drug design, optimization, and rescoring of dock-
ing poses or supplement for the X-ray crystallography [54].

Modern techniques add to QM/MM approach machine
learning elements such as neural networks. Shen and Yang [55]
put an effort to achieve the accuracy of ab initio QM/MM at the
computational cost similar to SEQM/MM approaches. They
developed an interesting new method and improved their previ-
ously reported QM/MM-NN (QM/MM neural network)
approach with QM/MM MD simulations using an adaptive
procedure.

As a future perspective and challenges, in front QM/MM MD
methods in the drug design, we can point the time needed and the
accuracy of these approaches. We might expect to simulate a full
system at QM level in a close future. The development of both
hardware and algorithms might bring quantum computers in the
future to a commercial usage. Drug discovery would be a promising
area of their application that will offer variety of applications [56].

3.2 Parametrization

of Force Fields

Molecular mechanics force fields (FF) were developed to treat
broad spectra of small organic drug-like molecules, lipids, carbohy-
drates, proteins, DNA, RNA, and other systems of interest. The
parameters for the energy functions, in the most used FF in CADD,
are derived from physical or chemical experiments and from QM
calculations, usually performed at a high level of theory (pHF,
DFT). The FF set of parameters includes values for different types
of atoms (mass, radius, charge), chemical bonds, angles, and
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dihedral angles. Experimental data used to parametrize FF can be
bond lengths from X-ray and neutron diffraction, dipole moments,
enthalpy of vaporization, spectroscopic parameters. Some of the
best parametrized FF for small molecules that are implemented in
different software for CADD are OPLS3 [57], GAFF [58],
CGenFF [59], and MMFF [60]—all of them rely on a number of
QM-derived parameters. Some of the recently updated FF (with
QM parametrizations) for proteins include AMBER ff14sb [61],
OPLS3 [57], and CHARMM [62]. Significant improvements have
been achieved for the simulations of DNA with Parmbsc1, para-
meterized from high-level QM data [63].

DNA and RNA can form a wide variety of complex tertiary
structures. In nucleic acid research, the study of structural diversity
and transitions between diverse types of structures is of great
importance to identify druggable RNA targets and to predict
small compound binding and specificity [64]. In particular, reliable
structure prediction must consider the effects of ionic phosphate
groups and base pairing and stacking. Zhang and co-workers devel-
oped the AMOEBA (Atomic Multipole Optimized Energetics for
Biomolecular Applications) polarizable force field for DNA and
RNA, based on high-level QM calculations [65]. Molecular
dynamics simulations using the AMOEBA force field were per-
formed for 20 different DNA/RNA molecules and were compared
with experimental data. The conformations were reproduced with
an average RMSD below or around 2.0 Å compared to NMR
structures.

3.3 Protein Structure

Refinement

Structures of protein-ligand complexes obtained by X-ray crystal-
lography are key in understanding interactions and optimizing
compounds. However, crystal models still contain questionable
geometric coordinates, as revealed, in particular, by the clashscore,
which is the number of clashes per 1000 atoms. Errors in ligand
geometry and position often lead to bad perception of the interac-
tions with the protein, which is detrimental for compound optimi-
zation. Borbulevych et al. have developed an automated refinement
process using a QM/MM based on the ONIOM method imple-
mented in the DivCon package [35]. They considered 80 protein-
ligand structures from the Astex diverse set. After automatic refine-
ment, they observed an improvement in the clashscore by an aver-
age factor of 4.5, as well as improvements in Ramachandran and in
rotamer outlier analyses and in ligand strain energy.

3.4 Virtual Screening

(VS)

VS is essentially composed of two phases: docking and scoring.
Nowadays, docking is considered reliable: the poses of docked
compound into target sites are relatively well reproduced when
superposed to the same compounds in co-crystallized structures.
Scoring is still a problem, and the results provided by diverse
scoring functions are protein-dependent [66]. To overcome this
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problem, Zhou and Caflish [67] used small molecules, named
probes, consisting of 2–10 atoms. Polar groups in the binding site
of the protein were replaced by mimetic probes, and for each
compound pose, the interaction energy value between the com-
pound and the probes was calculated using PM6. They considered
the target EphB4. First, a homology model was built using the
structure of EphB2. Then 2.7 million compounds of the ZINC
library, containing at least 1 hydrogen bond donor and 1 hydrogen
bond acceptor, were docked into the ATP binding site, with Auto-
Dock, resulting in ~100 million poses. Thirteen polar groups were
replaced by QM probes in diverse parts of the binding site of
EphB4, and cutoffs for filtering, according to QM values, were
determined using four known inhibitors of EphB4. Finally, using
the QM probe method, and additional filters, 23 compounds were
selected for experimental validation. Three low micromolar inhibi-
tors of EphB4 were identified.

In a recent mini-revue, Cavasotto et al. presented applications
of QM methods in small molecule docking and scoring [33].

3.5 Protein-Ligand

Affinity Prediction

Lu and co-workers [68] performed the computation of affinity
between Akt kinase and eight diverse, selective, and potent inhibi-
tors. They docked the eight compounds in a model of Akt, and they
used the complexes for MD simulations. After, they tested two
empirical scoring functions (DrugScore, DFIRE) and MM-PB/
SA, and both methods found poor correlations with experimental
affinity. Finally, they applied QM/MM method to optimize the
complex structures, and they used QM/MM-PB/SA to calculate
the interaction energies. A strong correlation appeared between
computed and experimental affinities. Additionally, the QM/
MM-PB/SA method was used to screen for analogues of apigenin,
a potent anti-cancer compound. Four compounds were selected
and tested in vitro against Akt kinase. They displayed nanomolar
inhibitory activities.

To predict the binding affinity for a series of cyclin-dependent
kinase 2 (CDK2) inhibitors, Mazanetz and co-workers [69] used
the fragment molecular orbital (FMO) method. They considered
14 X-ray structures with 14 ligands. FMO calculations showed a
good correlation to the experimental free energy of binding (r2 of
0.68). Then, they combined the enthalpy contributions calculated
by the FMO method, with entropy and solvation approximations,
and they built a QSAR model. Calculated values displayed a strong
correlation with experimental data (r2 of 0.94).

The FMO method was also used to analyze docking poses of
orexin-2 receptor agonists [70]. Sixteen analogues of non-peptidic
OX2R agonists were docked in a recent X-ray structure of the
receptor. Two potential binding modes were observed. By using
FMO, a strong correlation (r2 of 0.87) was found between experi-
mental values of EC50 and calculated values, for the “U”-shape

User-Friendly Quantum Mechanics: Applications for Drug Discovery 239



poses, while no significant correlation was found for the “L”-shape
poses. Such findings are important for drug design of protein
modulators when no co-crystal structure is available.

To illustrate the typical results obtained using FMO, we per-
formed calculations on the complex between galectin 1 and the
inhibitor thio-digalactoside (TDG) ligand, PDB entry 3OYW,
Fig. 2a, and between galectin 1 and the inhibitor 3,30-deoxy-
3,30-bis-(4-[m-fluorophenyl]-1H-1,2,3-triazol-1-yl)-thio-digalac-
toside (TD139), PDB entry 4Y24, Fig. 2b. While TDG has
Kd ¼ 67.3 μM for galectin 1, TD139 has Kd ¼ 0.22 μM for the
same target, thus showing ~300-fold increase in affinity compared
with TDG binding [71]. The left-hand plots show the pair interac-
tion energies (PIE) for the residues, and those on the right show
the pair interaction energy decomposition analysis (PIEDA) con-
tributions. We consider any interaction with an absolute PIE
greater than or equal to 3.0 kcal/mol to be significant
[72]. FMO indicated that the two inhibitors shared significant
interactions with seven residues His44, Arg48, Asp54, Asn61,
Trp68, Glu71, and Arg73 and one water molecule (named
HOH142 in PDB entry 3OYW and named HOH 331 in PDB
entry 4Y24). For the TD139 inhibitor, the FMO calculations
detected additional interactions with five residues Val31, Asn46,
His52, Gly53, and Asp123 and three water molecules (HOH324,
325, 328). Difference of shared interactions between TDG and
TD139 complexes is shown in Fig. 2c.

3.6 Identification

of Key Drivers

of Protein-Ligand

Binding

The heme-containing enzyme IDO1 is an attractive immunother-
apy target in cancer treatment. Zou and co-workers considered a set
of 20 imidazole derivatives including 4 classes of IDO1 inhibitors.
The compounds were subjected to induced fit docking into the
binding site of the enzyme, followed by molecular dynamics,
MM/PBSA free energy calculation, and QM/MM computation
with QSite program in Schrödinger. They discovered that Arg231
and 7-propionate of the heme group were major contributors to
ligand binding, thus suggesting possible ways to improve the bind-
ing affinity of new IDO1 inhibitors [73].

3.7 Protomer/

Tautomer States

To guide drug design, the correct protomer/tautomer state of
binding site residues and bound molecules must be identified.
X-ray crystallography is not precise enough to detect hydrogen
atoms in large systems. Neutron diffraction is a unique technique
that allows experimental identification of hydrogen positions in
crystal structures, but is of limited use mainly due to the necessity
of deuterium exchange. In a study, Borbulevych et al. applied
XModeScore to three cases for which X-ray diffraction model and
neutron diffraction model were available in the PDB database. The
method involves the QM X-ray refinement of a set of structures
containing all protomer/tautomer forms followed by a statistical
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Fig. 2 FMO calculations for two galectin 1-inhibitor complexes. (a) Thio-digalactoside ligand (TDG), PDB entry
3OYW. (b) 3,30-Deoxy-3,30-bis-(4-[m-fluorophenyl]-1H-1,2,3-triazol-1-yl)-thio-digalactoside (TD139), PDB
entry 4Y24. The left-hand plots show the total PIE for the residues, while those on the right show the PIEDA
contributions. The electrostatics, exchange repulsion, charge transfer, and dispersion PIE terms are color-
coded yellow, green, red, and blue, respectively. The three residues interacting more strongly with the ligands
(His44, Arg48, Glu71) are shown with the carbon atoms colored in green, and the other interacting residues
have their carbon atoms colored in pink. (c) Difference of interactions between TDG- and TD139-galectin
1 complexes. TDG is shown in orange and TD139 in gold, with the residues interacting more strongly with
TD139 colored in blue and the residues interacting more strongly with TDG in dark red. The water molecules
142 and 331, in, respectively, the TDG- and the TD139-galectin 1 complexes, are at similar positions



analysis of difference electron density maps for each map candidate
[74]. When applied to human carbonic anhydrase II in complex
with the inhibitor acetazolamide, and to the enzyme urate oxidase
in complex with uric acid monoanion, the method found the
correct protomer/tautomer states of the molecules. Applied to an
aspartic proteinase in complex with an inhibitor,XModeScore found
the correct state of the catalytic aspartic acid showing protonation
of the outer oxygen atom.

3.8 Cation-π and π-π
Interactions

These interactions play a fundamental role in the protein-ligand
binding, but they are not well described by classical force fields with
fixed charge models [75]. Accurately identifying key interactions
that drive the binding of β-lactam antibiotics to DD-peptidase
targets, and to β-lactamase enzymes which inactivate β-lactam com-
pounds, is essential to propose modifications to compounds in
order to counter bacterial resistance. To this end, Hargis and
colleagues used a combination of computational chemistry meth-
ods including quantum chemistry to analyze benzylpenicillin and a
novel β-lactam peptidomimetic complexed to Streptomyces R61
peptidase [76]. They identified an extended π-π network for the
phenyl group of benzylpenicillin with Phe120 and Trp233 that
contributes into stabilizing aromatic interactions and compound
efficacy for the DD-peptidase. However, structural analysis identi-
fied that this aromatic stabilization is also conserved in
β-lactamases. Following their investigation, they found that inter-
actions between the peptidomimetic tail region and the peptidase
are specific when compared to interactions with class C
β-lactamases. These findings suggest important modifications to
β-lactam antibiotics for improving their binding and specificity.

3.9 Bioactive

Conformations

The bioactive conformation of a compound is the target-bound
conformation. To study the prediction of bioactive conformations
using in silico approaches, Avgy-David and Senderowitz [77] have
considered a set of 100 FDA-approved drugs with 1–6 rotatable
bonds with available complexes in the PDB. For each compound, a
large conformational ensemble was generated using three different
force fields: OPLS-AA, MMFF, and CHARMm. Conformations
were merged and clustered. Centroid conformations were mini-
mized using the three force fields and four DFT methods. The
probability to find the bound conformation in low-energy regions
of unbound conformational ensembles was higher with QM meth-
ods and with CHARMm than with the two other force field
methods.

3.10 Bi-specific

Inhibitors

Restoration of p53 activity by inhibition of interaction with the two
oncoproteins MDM2 andMDMX inhibits the growth of cancerous
tumors in animals. Peptide and non-peptide inhibitors have been
developed. They display high affinity for MDM2, but they are less
efficient for inhibiting p53-MDMX interaction. To understand the
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origin of such difference, Chen and co-workers [78] considered
two peptide inhibitors pDI6W and pDIQ and the two oncopro-
teins MDM2 and MDMX. They performed MD with AMBER
FF02 polarizable force field during 10 ns, followed by QM/MM-
GBSA calculation. The QM region was defined by the residues
forming hydrogen bonds with the inhibitors and the MM region
by the rest. For the two peptides, they found better binding free
energies for MDM2 than for MDMX, in accordance with experi-
mental values. A decrease in the van der Waals interaction was the
main source of the weaker binding of inhibitors to MDMX than to
MDM2. Considering residue-based free energy decomposition
method, and residue conformations obtained during MD, they
identifiedM53 and Y99 in MDMX as the main origin of the weaker
binding of inhibitors to MDMX than to MDM2. They concluded
that the structure of future bi-specific MDM2/MDMX inhibitors
should be more flexible to adapt their structure to MDMX in the
identified region.

3.11 Covalent

Compounds

MacDonald and Boyd explored the potential of FKBP35 in Plas-
modium falciparum as a target for novel anti-malarial [79]. Since
the enzyme contains Cys106 in the active site, they investigated
where to introduce a warhead into Fk506, the natural substrate of
FKBP35, to form a covalently linked inactive substrate-enzyme
complex. They performed MD and QM/MM (ONIOM) calcula-
tions, and they described the transition and final states representa-
tive of the bond formation between the cysteinyl sulfur in the
protein and the Michael acceptor added to carbon 41 of the sub-
strate. Interestingly, FKBP12, a human enzyme with a highly simi-
lar active site, contains His87 at the corresponding position,
suggesting a potential selective inhibition of the covalent substrate
for the parasite.

3.12 Prodrugs Six-coordinate platinum(IV) prodrugs need to be reduced to four-
coordinate Pt(II) drugs in order to show activity against various
cancers. Despite their important role, serious side effects limit their
efficacy and motivate further studies to design next-generation Pt
agents. McCormick and co-workers used electrochemical experi-
ments and QM to decipher the mechanism for the two-electron
reduction of Pt(IV) prodrugs to Pt(II) drugs [80]. They consid-
ered three Pt(IV) prodrugs. By using DFT combined with contin-
uum solvation models, they proposed the mechanism of reduction.
All three prodrugs follow a stepwise mechanism, with a metastable
six-coordinate Pt(III) intermediate generated upon addition of one
electron. The loss of the two axial groups present in the prodrug
occurs upon addition of the second electron. A strategy to design
more inert Pt(IV) prodrugs with less side effects would consist to
modify the two axial groups that are lost upon reduction, in such a
way that lipophilicity and ease of reduction of the prodrug are
appropriately tuned.
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3.13 Reaction

Mechanisms

Identification of reaction mechanisms for enzymes with therapeutic
interest is important for the design of specific inhibitors. Type II
dehydroquinase enzymes (DHQ2) are essential enzymes for the
pathogenic bacterium Mycobacterium tuberculosis and Helicobacter
pylori, but MtDHQ2 and HpDHQ2 show a 50-fold difference in
catalytic efficiency. To understand such difference, Lence and
co-workers performed QM/MM simulations for the two enzymes
and for the three reaction steps which are the generation of the
catalytic tyrosinate, the formation of the enolate intermediate, and
the enolate dehydration [81]. They found that the second step
explains the observed differences in activity between the two
enzymes, with a more efficient stabilization of the enolate interme-
diate by the M. tuberculosis enzyme. Comparing the two enzymes,
they found differences for a water molecule in the catalytic pocket
and for the flexibility of the substrate-covering loop. The loop has
limited flexibility for HpDHQ2, due to a salt bridge between two
residues in this loop, while its flexibility is higher for MtDHQ2 due
to an apolar residue in one of the corresponding positions. Crystal
structures of DHQ2-ligand complexes exist, but they show a highly
similar binding mode for both enzymes, while the inhibitors pres-
ent in these structures have different inhibitory potencies. Deci-
phering enzymatic mechanisms and differences in enzyme reaction
steps of different species is essential for the rational design of more
efficient chemical entities.

3.14 Drug

Metabolism

Drug metabolism has a strong impact on clearance and toxicity.
Structures for main cytochrome P450 have been identified, and
thus structure-based drug metabolism can be considered. In an
early work, the metabolism of sirolimus, and its derivative ever-
olimus, was investigated by Kuhn and co-workers [82]. They used a
process in three steps: first, the compounds were docked into the
active site of CYP3A4, then molecular dynamics calculations were
performed, and finally the enzyme-substrate interactions were cal-
culated using QM. Predictions of the regiospecificities of the
hydroxylations and O-dealkylations for the two substrates were in
good agreement with experimental data. They also identified sub-
strate/CYP interactions that are important for the metabolism of
the substrate, and they explained why the metabolism in everolimus
is reduced compared to sirolimus. Many CYP isoforms show high
levels of flexibility and can bind a wide variety of ligands. Therefore
induced fit docking of compounds followed by MD and QM
calculations help in incorporating the CYP flexibility in the
structure-based process [83].

Recently Tyzack and Kirchmair have reviewed diverse
approaches and software packages for drug metabolism predictions,
including ligand-based approaches and methods for metabolite
structure prediction [84].
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3.15 QSAR Models Golgi α-mannosidase II (GMII) is a Zn2+ co-factor-dependent
glycoside hydrolase, and lysosomal α-mannosidase (LMAN) is a
protein with a closely related active site. GMII inhibitors have
anti-tumor activity, but inhibition of LMAN is not wanted. As all
known potent inhibitors of GMII also show inhibition for LMAN,
Bobovská and colleagues have built QSAR models to accurately
predict the affinity of compounds for both targets [85]. They
docked 57 inhibitors and 25 non-active compounds on the 2 pro-
tein sites, and they employed a combination of interaction energy
descriptors computed using empirical and QM approaches. Using
5 and 7 descriptors, they achieved RMSD of 0.8 and 1.1 kcal/mol
for ΔGbind for, respectively, GMII and LMAN, which is enough to
predict selectivity.

3.16 Molecular

Quantum Similarity

Ligand-based virtual screening (LBVS) was performed by Sullivan
and co-workers, using electron density attributes of chemical com-
pounds computed at the quantum level. They described com-
pounds by combining DFT and topological theory of atoms in
molecules (AIM). Quantum similarity was calculated between
known inhibitors and compounds in commercial databases, and
compounds were selected without explicit reference to chemical
structures. The method, applied to LBVS of anti-malarial agents,
discovered new anti-malarial compounds which are chemically dis-
similar, but show similarity at the quantum level [86, 87].

3.17 Enzyme Design The design of artificial enzymes, in biotechnology and biochemis-
try, requires the understanding of transition states and the quantifi-
cation of subtle effects due to small modifications introduced to the
proteins [88]. The 34E4 catalytic antibody which catalyzes Kemp
elimination of 5-nitrobenzisoxazole, as well as its Glu50Asp variant
which shows a 30-fold reduction in the catalytic performance, was
considered by Alexandrova and Jorgensen [89]. They used
QM/MM Monte Carlo simulations and free energy perturbation
theory to elucidate the mechanism of Kemp elimination catalyzed
by 34E4. Glu50 is the key residue in 34E4, and substitution by
Asp50 resulted in the increase of the computed activation barrier by
2.4 kcal/mol, which corresponds to a 62-fold reduction in the
reaction rate at 25 �C, in good agreement with experimental data.

4 Conclusion and Outlook

QM methods provide high accuracy in the description of receptor-
ligand interactions, the estimation of binding affinities, and the
modeling of bond formation or breakage. They model electronic
polarization, charge transfer, halogen bonding, and metal coordi-
nation, at the expense of long computing time. For complex
biological systems, hybrid QM/MM approaches, which combine
the accuracy of QM with the speed of calculation of MM, are used
to make the most of both methods.
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In early stages of drug discovery, QM methods contribute to
refine X-ray structures of active sites of proteins for virtual screen-
ing, and for electronically complex binding sites, to estimate the
affinity of small lists of docked compounds. In the subsequent
optimization phases, QM methods are particularly important to
predict the nature and the relative binding affinity of compounds
to targets, mutated targets, and off-targets, in order to select the
best compounds with a given selectivity profile, for synthesis and
testing. QM is particularly needed for metal-containing binding
site systems, for aromatic-containing compounds, for the identifi-
cation of protomeric and tautomeric states, and for the study and
design of covalent compounds and prodrugs. It opens the way to
investigate reaction mechanisms, decipher substrate-enzyme tran-
sition states, and predict drug metabolism. QM is also key for
parameterization of force fields regarding new types of targets, as
DNA/RNA, and for providing QM descriptors for improved
QSAR/QSPR models.

Today, QM methods are an unavoidable part of the CADD
toolbox, driven by advanced algorithms and unprecedented
computational power.
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42. Ryde U, Söderhjelm P (2016) Ligand-
binding affinity estimates supported by
quantum-mechanical methods. Chem Rev
116(9):5520–5566. https://doi.org/10.
1021/acs.chemrev.5b00630

43. Arodola OA, Soliman ME (2017) Quantum
mechanics implementation in drug-design
workflows: does it really help? Drug Des
Devel Ther 11:2551–2564. https://doi.org/
10.2147/DDDT.S126344

44. Ganesan A, Coote ML, Barakat K (2017)
Molecular dynamics-driven drug discovery:
leaping forward with confidence. Drug Dis-
cov Today 22(2):249–269. https://doi.org/
10.1016/j.drudis.2016.11.001

45. Awoonor-Williams E, Walsh AG, Rowley CN
(2017) Modeling covalent-modifier drugs.
Biochim Biophys Acta Proteins Proteom
1865(11 Pt B):1664–1675. https://doi.
org/10.1016/j.bbapap.2017.05.009

46. Kulik HJ, Zhang J, Klinman JP, Martı́nez TJ
(2016) How large should the QM region be
in QM/MM calculations? The case of cate-
chol O-methyltransferase. J Phys Chem B 120
(44):11381–11394. https://doi.org/10.
1021/acs.jpcb.6b07814

47. Lodola A, De Vivo M (2012) The increasing
role of QM/MM in drug discovery. Adv Pro-
tein Chem Struct Biol 87:337–362. https://
doi.org/10.1016/B978-0-12-398312-1.
00011-1

48. Barbault F, Maurel F (2015) Simulation with
quantummechanics/molecular mechanics for
drug discovery. Expert Opin Drug Discov 10
(10):1047–1057. https://doi.org/10.1517/
17460441.2015.1076389
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