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Course structure

* 5 Theoretical classes (2h each)
* 5 Practical classes (2h each)

* Topics:
* Introduction to Computational Drug Design
* Molecular representations, formats and descriptors
* Molecular similarity, fingerprinting and scaffolds
* Programmatic access to Chemical Databases (ChEMBL, PubChem)

* Molecular mechanics, energy minimization and molecular
dynamics

* Molecular docking and virtual screening
* Machine Learning in Drug Design

* Practical classes use Colab Notebooks, offering fre and online
computational capacity
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Introduction to Drug Design and
Computational Approaches
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Drug design and CADD

* What is Drug Design?
Systematic process of identifying molecules with
therapeutic potential, through a combination of
biological, chemical and computational techniques

* What is Computer-Aided Drug Design (CADD)?
Drug design process that uses computational

techniques, tools and models to facilitate the discovery
of new drugs.
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Drug discover versus development

* Drug discovery - all the experimentation and studies designed to
move a program from the initial identification of a biological target
and associated disease state to the identification of single
compound with the potential to be clinically relevant.

* Drug Development - typically begins once a single compound has
been identified, which is then progressed through various studies
designed to support its approval for sale by the appropriate
regulatory bodies
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Rational drug design

* Rational drug design — discovery of new drugs based on the
knowledge of structure and mechanism rather than trial and error

 Empirical or “irrational” drug discovery — random screening of
natural compounds or fortuitous observation of new effect

(serendipity)
 Examples: .
* Penicilin (fortuitous) : R N80 ch,
&<
OZ’“OH

* Imatinib (rational drug design)

®
N
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Disease -> Mechanism —> Target -> Drug %YNJ@’NY@)
N (0]
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How are new drugs found ?

* Natural products (e.g. Aspirin)

* Screening assays

* Synthetic chemistry

* Combinatorial chemistry

e Similarity with know drugs (“Me too” drugs)

* Re-purposing (searching known drugs for a new
effect)

* Serendipity:
* Drugs found by chance (e.g. Penicilin)
* Unforeseen side-effect of a drug or candidate
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Drugs found by different methods
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Penicillin
(serendipity)
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(HTS assay)
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(combinatorial chemistry)
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The challenge of drug discovery and design

®* The task of discovering new drugs is hard, expensive, lengthy and dependent on a very
large number of scientific disciplines, techniques and expertise.

¢ Millions of compounds may have to be screened in activity tests to select but a few
candidates (hits), of which only a few show promise as drug candidate (leads).

®* Lengthy and thorough clinical testing in both animals and humans is required, without
guarantee of approval by the regulatory entities.

¢ Millions (or billions) of dollars and ~5-15 years are required for the whole process.

® Alarge share of the profit generate by the pharmaceutical industries comes from only a
few drugs.

® Patent expiry narrows the profitability range of drugs and pushes the “me too” drug
concept
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The drug discovery pipeline/ funnel

Target Compound Lead Pre-clinical Approval
Phase 1 Phase 11 Phase 111
validation screening  optimization test ase ase ase to launch
Cycle time  ~ 1.5 year ~1.5 year ~1.5year ~1year ~1.5year ~2.5 year ~2.5 year ~1.5 year
% Cost per NME ~3% ~6% ~17% ~T7% ~15% ~21% ~26% ~5%
Probability of success ~66.4% ~48.6% ~59%

@ ~6

candidates candidates geandidates

Phase 11 & Phase 111 Dose, Efficacy, Toxicity

Phase 1 PK, Dose escalation, Toxicity

Pre-clinical test SAR, Drug-like properties, Solubility

L & Permeability, ADME, Plasma PK

Lead optimization Efficacy, Toxicity

Compound screening Visual screening, HTS
Target validation Disease models, Target identification, Target validation

Sun, Duxin, et al. Acta Pharmaceutica Sinica B12.7 (2022): 3049-3062.
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Drug Discovery & Development

Discovery Development
> >
Exploratory > >
research Pre-clinical Clinical

Exploratory
research

Candidate Full
Drug selection development

Animal Clinical FDA/EMA

. : Sk o T s TR Review and
generation identification | optimization models UES Approval

- Program selection - Virtual Screening - Lead to drug - ADME - Phase |
- Target identification - Assay development - ADME prediction - Efficacy - Phase Il
- Target Validation - HTS - Safety - Phase lll
- Drug design
- Hit to Lead

IND application ND application
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Drugs are expensive

JAMA | Original Investigation

Estimated Research and Development Investment Needed
to Bring a New Medicine to Market, 2009-2018

Olivier J. Wouters, PhD; Martin McKee, MD, DSc; Jeroen Luyten, PhD

Table 4. Mean And Median Expected Research and Development Expenditure on New Therapeutic Agents
Approved by the US Food and Drug Administration (2009-2018) by Therapeutic Area

Expenditure in US$, Millions

e (95% CIy°
Therapeutic Area® Size Median Mean
M e a n C O St: Antineoplastic and immunomodulating agents 20 2771.6(2051.8-5366.2) 4461.2(3114.0-6001.3)
Alimentary tract and metabolism 15 1217.6(613.9-1792.4) 1430.3(920.8-2078.7)
. . Nervous system 8 765.9(323.0-1473.5) 1076.9 (508.7-1847.1)
$ 1 ° 3 b I I'll O n Antiinfectives for systemic use 5 1259.9(265.9-2128.3) 1297.2 (672.5-1858.5)
Dermatologicals 4 747.4 1998.3
Cardiovascular system 3 3394 1152.4
Musculoskeletal system 3 1052.6 937.3
Blood and blood-forming organs 2 793.0 793.0
Sensory organs 2 1302.8 1302.8
Other® 1 1121.0 1121.0

Wouters(2020) J.Am.Medical Assoc., 323:884
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Where does CADD fit ?

Target modeling > homology modeling, molecular dynamics

Hit discovery - virtual screening, de novo design, similarity search

Lead optimization > QSAR, free energy calculations, QM calculations

ADME/Tox - in silico property prediction, predictors, machine learning / Al

CADD does not replace the experiments - it guides them !
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The Drug Design cycle and CADD

Identification of a

biological target, proof Literature, patents,
of principle, molecular competitor products

test system (‘me too’ research)

Natural products,

synthetics, peptides, _> m

combinatorial

[ Biological concept, ]
clinical side effects
chemistry \ l /

CADD is not a se ,creening data,
synthesis constr l /potheses
faster (what to te les, lowers
cost and attritior ,/ \ v becomes a

Computer-aided
l T DESIGN |CYCLE design: protein
crystallography,

NMR, 3D database

Biological Y| searches, de novo
testing [ Structure—actlvutyj ' design
]

relationships, QSAR

Candidate for
further »| Developmental )
development substance Formulation |—»
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Structure-based versus ligand-based DD

* Structure-based Drug Design (SBDD): relies knowledge of the 3D
Structure of the target and ligand to predict and optimize activity
(docking, virtual screening, molecular dynamics

* Ligand-based Drug Design (LBDD): relies on similarity to known
actives to find and expand new actives (chemical similarity,
descriptors, pharmacophores, QSAR)

Examples:

 SBDD: designing kinase inhibitors from crystal structures

* LDBD: predicting analogues for GPCR ligands when no receptor
structure is known
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Core computational techniques for DD

* Molecular modelling — building and visualizing molecules

* Molecular Mechanics — molecular energetics (approximate) and
conformation search

* Quantum Chemistry — electrostatics, reactivity, bond energy, rigorous
molecular energetics

* Molecular dynamics —target flexibility, induced fit

* Docking & Virtual screening — binding prediction and energetics

* Machine Leaning and Al — predict properties, automated discovery,
generate new molecules
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Modelling flow

2025/26

Creating
and
Editing
Model
Building
Calculations
methods: single point geometry vibrational molecular and
optimization analysis, Langevin
= M transition dynamics,
! state searching Monte Carlo
results: total energy simulation of

of _Aa stable »

MM = Molecular mechanics
QM = Semi-empirical or ab initio quantum mechanics
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Key databases in CADD

 PDB - protein structures

* Uniprot - annotated protein sequences

* PubChem - small molecules + targets

« ChEMBL - small molecules + bioactivity data

* DrugBank - drugs + targets + pharmacology

 ZINC -virtual screening libraries (very large collections)
* PDBind - protein-ligand complexes and Ki / Kd

e CCDB -small molecule (crystal structures)
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HIV protease inhibitors

X-ray structure

H i Trends in Annual Rates of Death due to Leading Causes of Death
1 989 determlnatlon Of among Persons 25-44 Years Old, USA, 1987-2000
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HIV protease inhibitors — CADD contribute

* Accelerated the design process - Rather than random
screening, researchers could rationally design molecules

* Provided visualization - Scientists could "see" how
molecules might interact with the target

 Enabled prediction - They could predict binding modes and
relative affinities before synthesis

* Guided optimization - Structural data from crystallography
combined with modelling guided improvements

2025/26 Paulo Martel - Computer Aided Drug Design 21



Oseltamivir (Tamiflu)

* Neuraminidase cleaves sialic acid
from cell surface to allow flu virus
particles to leave the host cell

o
c§_// :>H NH o

) o)
HaN A\ HZNANH ©

Oseltamivir Peramivir

* Zanaviris too polar—poor oral araciality,
taken by inhalation

* Oseltamvir can be taken via the oral route

* Both are transition state analogues

* Scaffold hopping to explore related, but
chemically distinct entities.
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Oseltamivir (Tamiflu) - CADD contribute

* Structure-based design using X-ray crystallography

* Molecular modeling and visualization

* [terative design cycles

* More emphasis on scaffold replacement rather than substrate mimicry

* Significant focus on predicting pharmacokinetic properties (absorption,
distribution)

 Computational chemistry helped identify which molecular features were
essential vs. dispensable

* Greater emphasis on optimizing drug-like properties computationally
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Representing Chemical Structures

Representation Name

Representation of Caffeine

Common Name

Synonyms

Empirical Formula
IUPAC Name

CAS Registry Number
ChEMBL ID

Wiswesser Line Notation
(WLN)

SMILES

Aromatic SMILES

InChl

InChlIKey

Topography

Surface

Caffeine

Guaranine

Methyltheobromine
1,3,7-Trimethylxanthine

Theine

CsH10N40;
1,3,7-trimethylpurine-2,6-dione
58-08-2

CHEMBL113

T56 BN DN FNVNVJ B F H

CN1C=NC2=C1C(=0)N(C(=0)N2C)C
CN1C(=0)N(C)c2nen(C)22C1=0
15/C8H10N402/c1-10-4-9-6-
5(10)7(13)12(3)8(14)11(6)2/h4H,1-3H3
RYYVLZVUVIJVGH-UHFFFAQYSA-N

Paulo Martel - Computer Aided Drug Design

24



Visualizing Chemical Structures

a—dreiding model

b - ball-and-stick

¢ —vdW (CPK)

d - molecular surface
e — surface potential
f-HOMO orbitals
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The importance of molecular similarity

HOY )
codeine

heroine

2025/26

Similar structures
similar functions

Mol. LogP Rotatable | Aromatic | Heavy
Chemical weight bonds rings atoms
similarity 341.4 5.23 4 4 26
B 463.5 4.43 4 5 35
Molecular
similarity N
H
Q/N /N\lrn <
20 [ C
2 o N
similarity A
3D
similarity
B
Vascular endothelial Tyrosine-protein kinase TIE-
Biological growth factor receptor 2 2
similarity active inactive
B active active
Global Yo et
similarity

Local similarity

0
" 8 ;u;
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Descriptors in chemical space

Finding the essential chemical descriptors (dimensionality
reduction), classifying, filtering, selecting.
Machine learning-methods

MW
700
600
Lipinski’s rule of 5
500
Peripheral drugs 400
84% Ro5 compliant
53% inside the Golden Triangle
70% have CNS MPO score > 4 300
CNS drugs
92% Ro5 compliant
77% inside the Golden Triangle 200
70% have CNS MPO score >4
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Scaffold - core structure or framework of a
molecule that forms the central backbone

to which various functional groups or

substituents are attache
Scaffold hopping - Guided search

through chemical space.

Searching through chemical space
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Molecular docking

* Molecular docking can
produce results similar to
hight-throughput
screening (HTS)

* Requires knowledge of
ligand and target
strcutures

Catalytic segment

Docking

Molecular Docking
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Computational pharmacophore screening

Structure-based screening (SBS)
« SBS - pharmacophore derived . (RE.
from the structure of the biding site e

* LBS-pharmacophore is derived e LY | QARG
from the structure of a known R . ’ >
. ~ e armacqp ore ]
llga n d 1 . iy » Qoen
~ (556,763 cmpds)
Binding pocket analysis +Docking

|_'

1 best cmpd IC;, = 2-8 UM

—

Donor
OH
o
h Acceptor w Acceptor
o] ;
H / Hydrophobic Donor

D

A c71d27a86a168f28
097bc30004b54c1f

3D pharmacophore hash

Ligand-based screening (LBS)
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Molecular conformation is important

Systematic Conformational Search

» Exhaustive incremental dihedral rotation search

* Single conformations
obtained from chemical
databases don’t tell the whole
story!

* Molecular simulation
methods can be used to
explore the space of possible
conformations and find low-
energy conformations

q

A

EAWAY

EU Ai\f’
Molecule docks in the “right” Torsion Space
conformation

Cutoff

~g

Scanning Conformational
Space

Single conformation Multiple conformations
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Sequence/structure analysis of targets

PQVTLWQRPLVTIKI
GGQLKEALLDTGADD
TVLEEMSLPGRWKPK
SMIGGIGGFIKVRQYD
QILIEICGHKAIGTYV
LVGPTPVNI IGRNLL
TQIGATLNF

* Sequence analysis can reveal patterns
characteristic of ligand binding and
mutations affect function or stability

* Molecular dynamics (MD) studies of the
HIV protease reveal the dynamics of the
ligand-free protein and effect of
mutations on flexibility

PQVTLWQRPLVTIKI
GGQLKEALLDTGADD
TVLEEMSLPGRWKPK
MIGGIGGF I KVRQYD
QILIEICGHKAIGTYV
LVGPTPVNI IGRNLL
TQIGATLNF

HIV protease

A-—
B — Mutations leading to resistance
C - Mutations can affect flexibility
D - Dynamics of ligand free protein
(studied by MD simualtions)
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Simulating the dynamics of molecules

* Capturing the dynamic aspect of
ligand and target structure is often
crucial to predict binding

* Molecular dynamics (MD)
simulations predict the evolution
of conformation with time.

MD simulation shows wide
movement of Phe121 residue,
enlarging the binding pocket of
the receptor

Benzodiazepine-like
inhibitor

2025/26

The open conformation can Phe121

accommodate ligands with
extended functional groups, 3
like the red group of the \‘

benzodiazepine-like inhibitor, Phdren
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Bind free energy by MD simluations

* Estimation of the binding potency of a
ligand is a most important computational
task

* Molecular dynamics (MD) simulations can
estimate both relative and absolute biding
free energies (AG or A A G of binging).

AGsind

—

[Rlaq [L]aq

_[RI[L]
* [RL]
AG=RTInK,
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Drug Descriptors and QSAR

ChembDes system - generation of fingerprints and descriptors

* Ligand molecules can be represented by CH;—:H;-(;H-IE,H,
molecule descriptors and fingerprints OH
* These molecule-dependent parameters

can be used to fit QSAR models or to train W /
H

Machine Learning models

Mdecules Chern Des Angerprinis Aplications
Train a machine learning model on experimental IC50 data
Hansch Equation 125
Example: Adrenergic blocking activity of B-halo-B-arylamines
3 10.0
Vi, — X ©
\\\ / lH—CHZ—NRR' %
©
€ 7.5
£
Log(/{) =122 7- 159 5 + 7.89 £
8 s0
o 5
x L
L
Conclusions:
e Activity increases if T is +ve (i.e. hydrophobicsubstituents)
eActivity increasesif  is negative (i.e. e-donating substituents) 25

2.5 5.0 7.5 10.0 12.
Predicted pICsg

2025/26 Paulo Martel - Computer Aided Drug Design 35



Machine learning and Al

Learning the chemical space
* Machine learning (ML) models are trained on S v (L) v (] o
experimental data (activity, toxicity, IC50, logP, etc) A —
* After learning, ML models can be used to: Chemical Latent space Chemical
. . . . space - - space
* Classification (eg:. Toxic / non-Toxic) P £ _._. > ity
* Property prediction (eg: IC50, logP) ‘3’,},‘3 - R | ey
* Generation of new compounds (eg: new
structures or scaffolds with affinity to specific | -
Generation Strate,
targets " |
* Reactivity prediction (eg: CYP metabolization : Q 0 "
) ' y p ( g ) ‘ ; Q Q /‘ v b . Specific Kinase SOM
4 Blndlng pOSGS (hard) QL-E%,L Or 4 ES General Kinase SOM
* Protein structure prediction(AlphaFold) “OgA S R
o ...mUCh more.... Generator \ Rewards
New compound generation
5 Structures Inputs Hidden layers Outputs
% . 0. % i’ '°?_DFJ z
[ J
® ® w ** N
®
° * % %
° % % * * it .
| | L * * * | -
Class 1 Class 2 3 Probability
Molecule vectorization Multiple hidden layers Affinity
Automatic classification Neural Network for Property prediction
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Arg502A
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