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The molecular bases of thermal and cold stability and

adaptation, which allow proteins to remain folded and

functional in the temperature ranges in which their host

organisms live and grow, are still only partially elucidated.

Indeed, both experimental and computational studies fail to

yield a fully precise and global physical picture, essentially

because all effects are context-dependent and thus quite

intricate to unravel. We present a snapshot of the current state

of knowledge of this highly complex and challenging issue,

whose resolution would enable large-scale rational protein

design.
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Université Libre de Bruxelles, CP 165/61, Roosevelt Ave. 50,

1050 Brussels, Belgium
2 Interuniversity Institute of Bioinformatics in Brussels, Université Libre
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Introduction
An important challenge in protein science consists in

unraveling the mechanisms by which the heat and cold

resistance of proteins is modulated in order for their host

organism to adapt to extreme environmental conditions,

with temperatures that range from about �208C to over

1208C [1]. The understanding of these mechanisms has

important practical applications in the context of the

optimization of protein-based biotechnological and bio-

pharmaceutical processes. This involves the rational de-

sign of proteins with modified thermal characteristics, and

opens the way towards de novo design [2].

In the last decades a lot of efforts have been made in this

direction (see [3–5] and references therein). The global

picture that emerges is that there is no universal, unique,

adaptive mechanism but rather an intricate combination
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of different factors, which frequently differs according to

the protein or protein family and is thus highly difficult to

disentangle. Moreover, due to the lack of direct and

general methods of investigation, the results are often

confused and sometimes contradictory, and thus only

some general trends are definitely settled.

The present paper reviews what is known regarding the

physical mechanisms at the molecular scale that proteins

use to remain folded and functional in either hot or cold

environments. It is not intended to be a full comprehen-

sive review, but rather a concise point of view of the

newest results, debated and contradictory hypotheses,

and perspectives for reaching a deeper understanding

of the field.

Protein thermal stability
Definitions

It can be generally assumed that structured proteins occur

in two states, the folded and unfolded states, with the

former being more populated in the temperature range

T cold
m < T < T hot

m , with T cold
m and T hot

m the denaturation

temperatures where the folding/unfolding transitions oc-

cur, whereas the latter is more populated outside this

temperature range (Figure 1).

The heat denaturation temperature or melting tempera-

ture T hot
m � T m is commonly taken as the best descriptor of

thermal resistance. A protein is considered as more ther-

mally stable than another if its Tm is higher. It is in general

biologically active up to this temperature, except if muta-

tions in key sites prevent the enzymatic reaction, ligand

binding or conformational change, in a nutshell, the

proper functioning of the protein. The separation into

psychrostable, mesostable, thermostable, and hyperther-

mostable proteins is performed on the basis of the Tm.

In contrast, the cold denaturation temperature T cold
m is

rarely measured since water usually freezes before this

transition is reached. Moreover, even if a protein remains

folded at low temperature, it is often inactive, usually due

to a lack of flexibility. T cold
m is thus not a good descriptor of

cold adaptation, which has instead to be directly related to

the activity at low T.

A frequent confusion is made between the thermal sta-

bility of a protein and the living or optimal growth

temperature of its host organisms (OGT), and the latter

is often wrongly taken as thermal stability descriptor.

This leads inevitably to some misunderstanding since
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Figure 1
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Protein stability curves defined by DG as a function of the temperature T. (a) Experimentally characterized stability curve for the cold-adapted a-

amylase from Alteromonas haloplanktis (AHA) (Uniprot code P29957, Enzymatic Commission number 3.2.1.1) [6]. The range in which the relative

activity is larger than 50% is reported in the figure. (b) Different stabilization strategies to increase protein thermal stability with respect to AHA a-

amylase (green curve): broadening of the stability curve by increasing the change in heat capacity upon folding (brown), shift of the entire curve

towards more stable temperatures by increasing the temperature of maximum stability (magenta) or shift to more negative DGs by increasing the

folding enthalpy (cyan). (c) Example of stability curves of psychrostable, mesostable, thermostable and hyperthermostable proteins that are

defined according to their Tm value; note that the thresholds are conventional and are sometimes assigned to different values. (d) Experimentally

derived stability curves for some proteins belonging to Homo sapiens, which hosts proteins with different thermal stability properties: from

mesostable proteins with Tm close to the living temperature (378C) to hyperthermostable proteins with Tm of more than 908C [7].
the two quantities are only partially correlated: while a

thermophilic organism only host thermostable proteins, a

mesophilic organism can host both mesostable and ther-

mostable proteins (Figure 1) while psychropholic organ-

isms can in principle host all types of proteins.

Investigation methodologies

Current experimental and computational techniques do

not capture a global picture of protein stability and

adaptation, and yield a patchwork of results that are

sometimes difficult to reconcile. They are summarized

in Table 1 with their respective advantages and limita-

tions.

Temperature dependence of the amino acid
interactions
A proper analysis of protein thermal stability requires

considering that the amino acid interactions are
Current Opinion in Structural Biology 2017, 42:117–128 
temperature dependent and thus that some are more

stabilizing than others at higher or lower temperatures

and vice versa. We review the interactions whose T-de-

pendence has been discussed in the literature and sum-

marize them schematically in Figure 2.

Hydrophobic effect and amino acid hydrophobicity

The hydrophobic effect constitutes the main driving

force of protein folding and results from the tendency

of hydrophobic amino acids to cluster together in order to

avoid contact with water. Its T-dependence is directly

connected to cold denaturation [8,9]. Indeed, whereas the

hot denaturation is associated to a thermal increment of

the conformational fluctuations, the cold transition is

mainly related to the weakening of the hydrophobic

effect [10�] that becomes unfavorable below a certain

temperature compared to hydrophobe–water interac-

tions.
www.sciencedirect.com
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Table 1

Different methods for getting insight into the molecular-scale origin of stability and adaptation. Abbreviations: 3D: 3-dimensional; H-D

exchange: hydrogen–deuterium exchange; NMR: nuclear magnetic resonance; B-factor: X-ray B-factor; OGT: optimal organism growth

temperature; MD: molecular dynamics simulations; CNA: constraint network analysis; LM: lattice model

Methods Information Drawbacks References

Statistical analyses of

sequences and/or

experimental 3D

structures of:

� Psychrostable,

mesostable,

thermostable

proteins

Structure-stability

relation up to Tm

Lack of data [10�,11,12,108]

� Proteins from

psychrophilic,

mesophilic,

thermophilic

organisms

Structure-stability

relation around OGT

Mixing the notions

of stability and OGT

[16,17,25,26,34,36,39–41,

43,49,53,54�,55,60,70�,

73,74,78,80–83,84�,85,

89,90,96–98]

Mutagenesis

experiments

Changes in thermal

properties and/or

activity upon mutations

Context-dependent,

difficult to generalize

[13,15,21–23,27,28�,32,

33,35,37,38,42,44–48,50,

51,57,66,67�,68,69,75–77,

86�,87,88,99,107,109–111]

Hydrophobicity

measurements

T-dependent

hydrophobicity

Limited to a subkind

of interactions

[14,20�]

Ligand-binding affinity

measurements

Ligand-binding thermal

and thermodynamic

features

Limited to binding

properties

[91–95]

Structural and dynamical

information from:

� Experimental data

(H-D exchange,

NMR, B-factor, . . .)

Relations between

stability, structure and

dynamical behavior at

different time scales

Mixing different

dynamical timescales,

force-field biases,

computational

approximations

[8,9,24,29,31,49,56,61�,

64,65,70�,72,79�]

� Computational

approaches

(MD, CNA, LM, . . .)
At temperatures between 258C and 1008C, the hydropho-

bic effect seems to remain essentially constant compared

to other interactions, as indicated by the high similarity of

the statistical potentials that describe the effective hy-

drophobic interactions in mesostable and thermostable

proteins [11,12] and by mutagenesis experiments [13].

However, its nature changes from entropy-dominated at

room temperature to enthalpy-driven above 1108C [15].

An observation that could be viewed as contradictory is

that proteins from thermophilic organisms have usually a

more hydrophobic core compared to their mesophilic

homologues, suggesting a higher stabilization effect of

the hydrophobic forces at high T [16,17]. However, it

could also be a side effect of, on the one hand, the smaller

size of thermophile proteins [18] and, on the other hand,

the ratio of hydrophobic to hydrophilic residues which is

smaller in small proteins but not sufficiently to counter-

balance their smaller volume to surface ratio [19].

The hydrophobicity is related to the hydrophobic effect,

but is defined for both hydrophobic and non-hydrophobic

moieties. The T-dependence of amino acids’ hydropho-

bicity has been investigated experimentally [20�] and

computationally [10�]. At temperatures below 258C, the

hydrophobicity of aromatic and hydrophobic residues

weakens, while no significant difference is observed for

polar and charged residues [10�]. From 258C to higher
www.sciencedirect.com 
temperature, the hydrophobicity of polar amino acids

increases substantially, whereas it is constant for hydro-

phobic residues (in agreement with the above mentioned

results) or increases slightly [10�]. Note that investiga-

tions on alkanes rather suggest a mild increase of the

hydrophobicity of hydrophobic moieties from 258C up to

a maximum at about 708C followed by a very slight

decrease [14].

Salt bridges

The stabilizing or destabilizing nature of salt bridges at

room temperature is still debated. However, it seems

established that they contribute to improving the heat

resistance of their host proteins and are avoided in cold-

adapted proteins. Therefore, salt bridges have been nat-

ural targets in protein engineering approaches aiming at

increasing thermal stability [15,21].

The thermal resistance of salt bridge interactions has

been firmly demonstrated experimentally using double-

mutant cycle techniques [22,23], as well as computation-

ally through the derivation of statistical potentials [11,12]

and MD simulations [24]. Other indications come from

comparisons of homologous proteins, where the number

of single salt bridges and salt-bridge networks tends to

increase from psychrophilic to hyperthermophilic organ-

isms [25,26]. These interactions are preferentially located

at the protein surface, mediated by arginines that can
Current Opinion in Structural Biology 2017, 42:117–128
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Figure 2
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• T-resilience due to smaller desolvation penalty at high  T

• T-stabilization due to charge-water interactions
• Long range stabilizing/destabilizing effects
• Smaller repulsion between charges of equal sign at high  T

• Avoided in cold-adapted proteins to ensure flexibility
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Summary of the impact of amino acid interactions on the heat resistance and cold adaptation of proteins.
simultaneously be involved in two salt bridges or H-

bonds, and contribute to the structural rigidity that char-

acterize thermostable proteins [27]. Note however that

only key nodes (hubs) of salt-bridge networks seem to

contribute substantially to thermal stability [28�].

From a thermodynamic point of view, the thermal resis-

tance of salt bridges can probably be attributed to the

increase of the hydrophobicity of charged residues with

temperature (see previous section), and thus to a smaller

desolvation penalty incurred in forming a salt bridge [29].

It is associated to a decrease of the folding heat capacity

DCp(T), resulting in the down-shift and broadening of the

protein stability curve (see Figure 1b) [22]. At very high

temperatures, above 1008C, where the DCp(T) can no

longer assumed to be constant, the stabilization effect

is even more pronounced [15].

In contrast, it was shown that proteins from psychrophilic

organisms tend generally to avoid salt bridge formation.

The common explanation is that their absence enhances

the protein flexibility and thus activity at low temperature

[30–32]. Some special kinds of salt bridges seem never-

theless favorable, which form across the hydrophobic

core, facilitate water penetration and hence maintain

the required flexibility [31].
Current Opinion in Structural Biology 2017, 42:117–128 
Other ionic interactions

It has been questioned whether the thermal stabiliza-

tion due to salt bridge formation is sufficient to explain

the observed increment of the number of charged resi-

dues at the surface of proteins from thermophilic organ-

isms with respect to their mesophilic or psychrophilic

counterparts [25]. This has led to the suggestion that

direct interactions between the solvent and charged

surface residues provide a stability advantage in hot

environments [25]. Other explanations have been pro-

posed, among which the long-range nature of the elec-

trostatic forces, which are strongest when charges form

salt bridges but remain non-negligible up to distances of

more than 10 Å [33,34], and must be taken into account

in the stabilization of salt bridge networks [35]. Also, the

strength of the repulsion between identical charges

weakens with the temperature, as shown by T-depen-

dent statistical potentials [12]. Another explanation of

the abundance of surface charges is their possible role in

the destabilization of misfolded or aggregated structures

(negative design mechanism) [36].

As a result, targeting surface charges has been proposed as

a valuable protein design approach [33,37,38]. However,

the success depends on the type of substitution, its

environment, and its role in the protein’s ion network.
www.sciencedirect.com
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p–p interactions

Interactions between aromatic residues play a funda-

mental role in protein stabilization, protein-protein inter-

actions and ligand binding [39]. They occur in p–p dimer

pairing or extended p–p clusters with variable geome-

tries, which indicates the self-associating property of this

interaction [39]. The number of pairwise p–p interac-

tions seems to increase with the growth temperature of

the host organism, from psychrophiles to hyperthermo-

philes [40,41]. Usually, the number of p–p clusters also

follows the same trend [40]. The preferred conformations

in proteins from thermophilic organisms are the T-

shaped orthogonal and tiled geometries, while the

near-parallel geometry is less observed. Despite several

other observations of the thermostabilizing tendency of

these interactions [12,42], a clear understanding is still

missing.

Cation–p interactions

Several studies suggest the importance of cation–p inter-

actions in thermal stabilization [12,43]. This characteristic

is especially valid for the cation–p interactions involving

arginine, whose delocalized charge on the guanidinium

group yields dispersion energy contributions in addition

to electrostatic ones. Moreover, mutagenesis experiments

have shown that while cation–p interactions are at best

weakly stabilizing at room temperature and in some cases

even destabilizing, they become more stabilizing at ele-

vated temperatures, especially close to the protein melt-

ing temperature [44].

In contrast, a reduced number of cation–p interactions are

observed in proteins from psychrophilic organisms, which

is consistent with the picture that cold adaptation is

reached by the weakening of intramolecular interactions

to ensure sufficient flexibility [32].

Disulfide bridges

It is difficult to assess the real impact of the temperature

on disulfide bridges due to the rarity of cysteines. It seems

however established that the disruption of native disul-

fide bridges in (hyper)thermostable proteins leads to a

loss of thermal stability via an increase of conformational

entropy of the unfolded state [45–47]. On the other hand,

de novo engineering of disulfide bonds gives contradictory

results that depend crucially on the position where the

new interaction is introduced [45,48,49]. Some results

suggest that their introduction in flexible regions contrib-

ute to enhance the thermal resistance while those intro-

duced in fully structured regions have no impact [48].

Note that the reconciliation of these results could also

involve considering whether or not the disulfide bridges

are maintained in the unfolded state.

In cold-adapted enzymes, the observed disulfide bridges

are often likely to have a functional role instead of being
www.sciencedirect.com 
related to thermal stability, for example, by providing the

required conformation in the active site regions [50,51].

Interestingly, a series of disulfide bridge prediction meth-

ods have been developed to automatically suggest where

to insert such interactions to improve stability (see [52]

and references therein).

Interaction networks

It becomes increasingly clear that the whole network of

interactions that make up the proteins must be consid-

ered to understand the thermal and cold adaptation

mechanisms, as illustrated in Figure 3. Indeed, these

are related not only to the type of interactions but also

to their specific role in the network which they are part of.

In some cases, the network hubs play a pivotal role to

confer a higher thermoresistance [40,53,54�,55], while in

others peripheral nodes seem important in this respect

[54�]. In yet other cases, the stronger heat resistance of

thermostable proteins can be attributed to differences in

size and geometry of the interaction networks and to the

network resilience to temperature [34,56].

Considering full interaction networks makes the elucida-

tion of the molecular bases of thermal stability more

complex, but is essential to capture emergent features

such as the cooperativity and anti-cooperativity of the

interactions and their role in the adaptation mechanisms.

Interaction network analyses could also suggest new

approaches in protein engineering in view of designing

proteins with modified thermal properties [57].

Thermal effects of structure and dynamics
The global structural and dynamical features that

improve thermal resistance or cold adaptation are here

discussed and illustrated in Figure 4. Note, however, that

these different characteristics are often interdependent

and also related to the amino acid interactions, and that it

is impossible to completely separate their effects.

Rigidity and flexibility

A wide series of experimental and computational inves-

tigations have demonstrated that protein thermal stability

is related to the rigidity/flexibility properties of the pro-

tein structure (see [58,59] and references therein). Ther-

mostable proteins are indeed generally characterized by

an enhanced global conformational rigidity with respect

to their mesostable homologues, whereas cold-adapted

proteins usually present a higher flexibility.

The general validity of this relation has been frequently

discussed, since both heat and cold adaptations require an

intricate correlation between local flexibility and rigidity,

the former being important for activity while the latter for

correct folding and stability [58–60,61�]. Moreover,

enzymes that show a high flexibility associated with an
Current Opinion in Structural Biology 2017, 42:117–128
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Figure 3
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Schematic illustration of interaction networks that contribute to the temperature adaptation of proteins.
unexpectedly high stability and vice versa have been

recently characterized [62,63].

Despite the fact that the study of the rigidity/flexibility

distribution throughout the protein structure and its

relation to the thermal stability remain a debated field

of research, more and more experimental (H/D, NMR)

and computational (MD, CNA) results seem to converge

towards the validity of the ‘corresponding state hypothe-

sis’ affirming that enzymes display the same pattern of

local rigidity and flexibility at their respective optimal

temperatures [64,65].

Loops

Loops are intimately related to the flexibility/rigidity

patterns of proteins and, as a direct consequence,

impact on their thermal stability properties. Usually

loop shortening results in thermal stabilization, but

the magnitude of this effect is still debated, probably

because it is protein-dependent and context-dependent.
Current Opinion in Structural Biology 2017, 42:117–128 
Thermodynamically, the loss of enthalpy due to the

shortening is overcome by a gain in conformational entro-

py of the folded state and/or by an entropy loss in the

unfolded state [66,67�].

Some investigations point towards a minimal effect on

the protein thermal stability of the deletion of specific

surface loops as well as of the insertion of proline residues

to rigidify them [68]. In other analyses on the contrary, a

substantial increase of the protein thermoresistance is

observed in proteins in which the loops have been

shortened [66,67�], or in mesostable proteins in which

loops from hyperthermostable homologues were trans-

planted [69]. The T-dependence of loop dynamics has

been investigated by computational methods [70�], indi-

cating that loops related to protein activity are more

flexible at low temperature, while loops involved in

stability show an opposite dynamical behavior. Note that

the structures adjacent to flexible loops generally show

larger fluctuations compared to the other parts of the
www.sciencedirect.com
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Figure 4
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• Cold-adapted proteins are in general more flexible
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• Loop shortening in general promote thermostabilization

• Their effects are protein-and context-dependent

• Non-local effect of loop dynamics in adjacent structure regions

• Increased density of protein-solvent H-bonds favors thermostability
• Larger and more resistant hydration layer in thermostable proteins
• Relative destabilization of surface water in cold-adapted proteins

• Optimized disposition of backbone and side chains in the core at high  T
• Removal of cavities in the core promotes thermostability
• Peripheral hydrophobic contacts in the core important for  T-stability
• Increase of water-sized cavities in cold-adapted proteins
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• Prominent role in the core’s flexibility of cold-adapted proteins

• In general, context-dependent effect of oligomerization
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• Usually increases folding cooperativity
• Active site mobility and reduced substrate affinity in cold-adapted proteins

Current Opinion in Structural Biology

Summary of the effect of structural and dynamical features on the heat resistance and cold adaptation of proteins.
structure, which suggests a non-local effect of the loop

dynamics [70�].

Surface hydration

The role of protein surface hydration and its dynamics in

promoting thermal stability has still to be fully under-

stood (see [71] and references therein) even though

different investigations point out its relevant role.

Hydration in thermostable proteins seems usually char-

acterized by an increased density of solvent-protein hy-

drogen bonds, a larger shell size and a stronger shell

resistance to the temperature compared to mesostable

proteins. The formation of a highly connected network of

water-water hydrogen bond interactions coupled to the

protein surface could prevent the thermal destabilization

by avoiding the penetration of water molecules

[56,72,73]. This effect is amplified in thermostable pro-

teins since they have a reduced number of apolar residues

at the surface counterbalanced by an increase in charged

residues.

In cold-adapted proteins, which have instead more ex-

posed non-polar residues on the surface, the water struc-

ture around the surface is destabilized compared to bulk
www.sciencedirect.com 
water [74], which leads to an increase of the overall

conformational flexibility of the protein.

Core packing

Multiple investigations show that the core packing effi-

ciency seems related, albeit not crucially, to protein

thermal stability. Indeed, thermostable proteins seem

to have removed the cavities in their core regions and

optimized the disposition of their backbone and side

chains to adapt to high temperatures [54�,75–78]. Less

trivial and still debated is the understanding of the

physiochemical origin of this improved core packing:

some investigations identified as pivotal factor the hydro-

phobic effect, the van der Waals interactions [75] or the

gain in water-entropy upon folding [76]. Interestingly, it

has been suggested that while the hubs of core residue

clusters contribute equally to the packing efficiency in

mesostable and thermostable proteins, the core periph-

eral residues play instead a fundamental role in thermo-

stable proteins to improve this efficiency and thus

thermoresistance [54�].

Proteins from psychrophilic organisms have larger

internal cavities that can accommodate more buried

water molecules compared to those of their mesophilic
Current Opinion in Structural Biology 2017, 42:117–128
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homologues, and that are characterized by a higher po-

larity [74]. As a consequence, they are usually character-

ized by a weaker, less packed and more flexible

hydrophobic core.

Internal wetting

Cavity hydration is expected to impact on the thermal

characteristics of proteins, but the results are anything but

clear-cut. Experimental mutagenesis experiments aimed

at modifying the internal cavity characteristics are not

conclusive regarding the nature of the internal wetting:

this seems to act as a stabilizing factor in some proteins

but not in others [79�]. Recent MD simulations that

estimate the hydration free energy in a set of proteins

from mesohophilic and thermophilic homologues support

the important role played by the internal wetting in the

modulation of the thermal resistance: in thermophile

proteins, the hydration of the cavities could contribute

more substantially to the overall stability than in their

mesophile counterparts [79�]. In contrast, a large scale

study of protein 3D structures indicates that thermophile

proteins have less buried water than their mesophile

homologues [80], thus suggesting a less important role

of the internal wetting.

These two apparent contradictory results can be recon-

ciled by considering that thermostable proteins have on

the average less cavities and that, when they nevertheless

have, these are more hydrated. Further investigations are

needed to get a definite picture.

In proteins from psychrophilic organisms, the observed

increase of the water-sized cavities could indicate a

prominent role of the internal solvation in the increase

of the core flexibility characterizing their heat and cold

labile structures [74].

Protein–protein and protein–ligand complexes
in thermal and cold adaptation
Proteins often form complexes to accomplish their bio-

logical functions, and this modifies their thermal char-

acteristics, as summarized in Figure 4.

Protein–protein interactions

The temperature adaptation of a protein complex is

achieved by the combination of different mechanisms

that tend to stabilize the protein–protein interfaces and

the structure of the complex, while reducing the affinity

for non-native interfaces and other aberrant assemblies.

A large comparison of modeled structures of protein

complexes in different host organisms [81] show that a

prominent role is played by the positively charged resi-

dues, whose amount correlates with the OGT. This

enrichment is suggested to prevent the assembly of

misfolded chains. Moreover the charged residues in the

interface are likely to strengthen the binding energy of
Current Opinion in Structural Biology 2017, 42:117–128 
the complexes through electrostatic interactions. The

hydrophobic contact area is significantly increased in

proteins from thermophilic and hyperthermophilic organ-

isms and reduced in psychrophilic ones [82,83]. This

trend could be related to the temperature dependence

of the hydrophobic surface solvation energy (see ‘Hydro-

phobic effect and amino acid hydrophobicity’ section).

The effect of the total interface area on the thermal

stability of the complexes is currently debated. Some

recent analyses find a positive correlation between the

level of expression of the protein complex and the inter-

face size and this relation is stronger in thermophilic than

in mesophilic organisms [84�]. This has been suggested to

be related to the evolutionary pressure for keeping the

thermostability of the complex while avoiding detrimen-

tal subunit interactions [84].

Oligomerization mechanisms

The formation of higher-order oligomeric structures is a

possible strategy for protein thermal adaptation [85].

Indeed, protein–protein contacts usually ensure a more

efficient packing of the oligomeric structure compared to

the monomeric one, thereby increasing the heat tolerance

of the protein. Note also that the folding kinetics of

higher-order oligomers is often a multistate scheme,

which can lead to the kinetic stabilization of some pro-

teins.

It is intriguing to note that not only mutations at the

interface can occur in promoting the higher oligomeriza-

tion state and thermal stability but also mutations in the

core far from the interface. In the latter case, protein

subunits undergo conformational changes that promote

the oligomer formation to compensate the possible loss of

stability of the individual subunits [86�,87,88].

The oligomerization mechanism is a strategy that can be

used differently by different proteins and/or protein

families. For example, psychrostable proteins have usu-

ally lower oligomerization forms with respect to their

mesostable homologues. Sometimes, however, the oligo-

merization strategy can be used inversely, promoting the

flexibility and the activity of the proteins at low tempera-

tures, while reducing the stability [89].

Protein–ligand binding

Ligand and metal binding usually affect the protein

thermal stability by modifying the melting temperature,

the folding heat capacity and the folding enthalpy. These

modifications are specific to each protein–ligand pair, and

are due to the coupling between the folding and binding

equilibrium processes [91]. The binding mechanisms are

relatively well understood even though their complexity,

which arises from the fact that binding occurs not only in

folded structures but also in partially or fully unfolded

ones [92], has still to be fully deciphered.
www.sciencedirect.com
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The thermal stability changes are also a consequence of

the structural changes associated to the binding [93].

Indeed, these frequently induce an increase of the folding

cooperativity and a more efficient protein packing, which

in turn generally lead to a higher thermostability [94].

Cold-adapted proteins require an increased conforma-

tional mobility of the active site region with respect to

their homologues from mesophilic and thermophilic

organisms to maintain the catalytic activity. This implies

that a higher number of protein conformational states

must be able to bind the ligands, among which some have

low binding affinity. As a consequence, the average

affinity for the ligands is usually rather low compared

to that of mesophilic and thermophilic homologues [95].

Conclusion
Summary of the adaptation strategies to cold and heat

It is very difficult to pinpoint the features that specifically

ensure cold or heat adaptation, since they mix stability

requirements with function, solubility, aggregation pro-

pensities and other environmental parameters. This is

particularly true for proteins from psychrophilic organ-

isms, in which maintaining a stable folded structure at low

temperature is usually less problematic than keeping a

sufficient flexibility in the functional regions. For proteins

from (hyper)thermophilic organisms, the main issue is

sometimes to avoid alternative, non-functional or aggre-

gated, structures rather than to increase the Tm.

Moreover, it has become manifest that these mechanisms

cannot be fully rationalized on the basis of the sum of

individual interactions, but require considering feature

networks. This adds a level of complexity to the problem,

but can be expected to reconcile some contradictory

results described in this paper: what is true in some

protein environments is false in others. Clearly, more

systematic and quantitative measurements as well as

computational analyses are required to fully elucidate

the molecular bases of the thermal stability and activity

properties of proteins.

Figures 2 and 4 contain a summary of the characteristics

that appear — in the present state of knowledge — to

contribute to heat and cold adaptation, and of the features

whose effects are still debated.

Future perspectives

Despite all the efforts devoted to the understanding of

the heat and cold adaptation mechanisms, the picture

remains incomplete. Some (partially) unexplored tracks

that would be valuable to explore are listed hereunder.

� Proteome-wide analyses of protein structures could

give more precise information and deeper understand-

ing of the structural strategies used by proteins to adapt

to different thermal conditions [96,97].
www.sciencedirect.com 
� The role of evolution in the thermal adaptation

process has still to be deciphered. Interesting

evolutionary hypotheses that differ according to

the organism family and its living environment have

been proposed [36,98–100], but need to be checked

and enriched.

� Chaperones that assist protein (re)folding are known to

adapt their functions to the OGT [101] and to be

essential for the cell to respond to temperature

fluctuations [102,103].

� In vivo crowding has been shown to modulate the

thermal and thermodynamic stabilities but needs to be

further investigated [104–106]).

� Membrane proteins have characteristics that differ

profoundly from those of globular proteins and their

specific thermal properties have not yet been analyzed

in detail [107].

� Improved prediction methods of thermal stability or of

its variation upon mutations, with faster and more

accurate outcomes, is of utmost importance in

biotechnological and biopharmaceutical applications

[108–111].
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