Proteínas: propriedades conformacionais

O elevado número de graus de liberdade da cadeia polipeptídica resulta num igualmente grande número de conformações possíveis.

As proteínas biológicas tem a proprieda de apresentar um *estado nativo* de estrutura tridimensional bem definida, muito diferente do estado desdobrado de cadeia aleatória característico dos polímeros.

O estado nativo da proteína corresponde a uma família de conformações com energias próximas, num região de baixa energia (mínimo local, ou global(?)).

O "preço" entrópico de seleccionar o estado nativo de entre o largo conjunto de possíveis conformações "desdobradas" é pago pela entalpia das forças intermoleculares presentes na estrutura nativa.

Lisozima: estado nativo

Proteínas: propriedades conformacionais

•As cadeias polipetídicas raramente apresentam nós

•Os ângulos e comprimentos de ligação observados nas proteínas são geralmente muito idênticos aos observados nas estruturas de grupos funcionais isolados.

•As rotações livres de ligações das cadeias laterais ou da cadeia principal da proteína favorecem geralmente conformações semelhantes às observadas nos grupos isolados.

·Os ângulos ϕ e ψ observados para os resíduos da proteína caem quase sempre dentro dos limites característicos da unidade peptídica isolada

•As rotações em torno das ligações da cadeia lateral favorecem geometrias em que há máxima separação entre grupos volumosos. A figura abaixo ilustra o caso da valina:

Propriedades conformacionais da ligação peptídica

Embora a complexidade estrutural e conformacional das proteínas seja imensa, existem constrangimentos geométricos que permitem simplificar a sua análise. A ligação peptídica é uma *invariante estrutural* das proteínas, podendo considerar-se aproximadamente planar nas suas formas *cis* e *trans*.

A forma *cis* é observada muito mais raramente (cerca de 0.05%) excepto quando *i+1* é uma prolina (cerca de 5-6%). Embora diferença de energia entre os dois estados seja pequena (~2 kcal/mol), a barreira energética é consideravel (~20 kcal/mol).

Sequência de planos peptídicos

Apesar de se observarem pequenas desvios de comprimentos de ligação, ângulos e planaridade, a ligação peptídica pode considerar-se praticamente rígida, levando a uma representação da conformação da cadeia polipeptídica como uma sequência de planos:

Planos peptídicos na molécula de lysozyme (2vb1)

Propriedades conformacionais da ligação peptídica: ângulos de torsão ϕ , $\psi \in \omega$ (IUPAC-IUB)

Ângulo de Torsão $\phi_i - C_{i-1}, N_i, C_i^{\alpha}, C_i$ Ângulo de Torsão $\psi_i - N_i, C_i^{\alpha}, C_i, N_{i+1}$ Ângulo de Torsão $\omega_i - C_i^{\alpha}, C_i, N_{i+1}, C_{i+1}^{\alpha}$

-180 < ω_i , ϕ_i , ψ_i < +180

Restrições locais de flexibilidade na conformação da cadeia polipeptídica

Embora os ângulos de torsão fi e psi possam *em teoria* assumer valores entre +180 e -180, a presença de **impedimentos estereoquímicos** reduz largamente o númoe conformações permitidas.

G.N. Ramchandran, em 1963, analisou pela primeira vez o espaço das conforamações permitidas usando um modelo de **esferas rígidas** com distâncias mínimas de aproximação entre os átmos definidas a partir de um conjunto de raios atómicos obtido por análise das estruturas cristalográficas.

Distâncias de contacto interatómicas e modelo de esferas rígidas

A análise de contactos atómicos em estruturas cristalinas permitiu definir distâncias mínimas de aproximação entre os átomos da cadeia polipeptídica (Ramachandran,1963). Para alem do valor típico de aproximação, define-se um limite extremo cerca de 0.10Å inferior que corresponde a uma tolerância máxima do valor de aproximação.

3	2	5	
Tipe de contacto	Limite Normal	Limite Extremo	
НН	2,0	1,9	r(H)=2.0/2 = 1.0 Å
НО	2,4	2,2	r(O)+r(H)=1.35+1.0 = 2.4 Å
ΗΝ	2,4	2,2	r(N)+r(H)=1.35+1.0 = 2.4 Å
НС	2,4	2,2	r(C)+r(H)=1.5+1.0 = 2.5 Å
00	2,7	2,6	r(O)=2.7/2 = 1.35 Å
O N	2,7	2,6	r(O)+r(N)=1.35+1.35 = 2.7 Å
O C	2,9	2,7	r(O)+r(C)=1.35+1.5 = 2.9 Å
N N	2,7	2,6	r(N)=2.7/2 = 1.35 Å
N C	2,9	2,8	r(N)+r(C)=1.35+1.5 = 2.9 Å
СС	3,0	2,9	r(C)=3.0/2 = 1.5 Å

Verifica-se que as distâncias de contacto podem ser descritas como somas de distâncias típicas para cada tipo de átomo (raio atómico), pelo que o espaço de conformações da da cadeia polipeptídica pode, pelo menos em primeira análise, ser analizado através de um **modelo de esferas rígidas**.

Restrições locais de flexibilidade: o diagarama de Ramachandran

Regiões permitidas no modelo de esferas rígidas

Ramachandran e colaboradores usaram um computador para explorer os espaço dos possíveis valores de $\varphi \in \psi$, e representaram estes valors num diagram 2-D, em que cada ponto corresponde um possível pares (φ, ψ).

As regiões marcadas a cinza, verde e vermelho no **diagaram de Ramachandram** correspondem aos valores de ângulos $\phi \in \psi$ em que não há sobreposição de atómos no modelo de esferas rígidas.

Restrições locais de flexibilidade: o diagarama de Ramachandram

Exemplo de conformação "proibida"

Restrições conformacionais impostas pelos contactos interatómicos:

(A) Alanina (B) Glicina

As regiões sombreadas denotam as zonas dentro dos limites mínimos permitdos, e a as delimitadas pela linha a cheio as correspondentes aos limites extremos, definidos por Ramachandram em 1963. As zonas a tracejado são alcançáveis através de pequenas flexões dos ângulos de ligação do "backbone" da cadeia polipeptídica.

Propriedades conformacionais: restrições locais de flexibilidade

(A) N-acetil-Ala-Ala-amida - simulação por dinâmica molecular para cálculo das energias conformacionais em função dos ângulos de torsão. As zonas a escuro são mais estáveis, note-se que os reajustamentes dos ângulos e comprimento de ligações resultam numa zona accessível consideravelmente mais ampla do que aquela que é permitida no modelo de esferas rígidas.

(B) Distribuição dos ângulos torsionais para os resíduos (exceptuando Pro e Gly) de 12 proteínas cuja estrutura de alta resolução foi determinada por cristalografia de raios X. As zonas verdes representam os limites máximos permitidos para os contactos de van der Waals. Embora a maioria dos resíduos caia dentro destas zonas, existe ainda assim um número significativo de resíduos for a destas, em particular na zona (0,-90).

Propriedades conformacionais: restrições locais de flexibilidade

- •A conjunto de 500 proteínas, resíduos Gly e Pro não incluidos
- •B conjunto de 500 proteínas, apenas resíduos sem estrutura secundária regular

A comparação do diagrama **A** com o diagrama **B** evidencia a predisposição *intrínsica* dos resíduos para assumirem ângulos $\phi \in \psi$ dentro das regiões correspondentes às estruturas $\alpha \in \beta$. Este facto é, em si mesmo, uma das razões para a predominância destes tipos estrutura secundária.

Observa-se, em **B**, uma maior ocorrência das conformação de poliprolina e hélice 3₁₀ (esquerda e direita), pois estas conformações colocam os carbonilos de resíduos successivos formando ângulos de ~90° entre si - uma geometria típica das mudanças de direcção na cadeia polipeptídica.

Lovell SC et al (2003) Proteins 50:437-450

Propriedades conformacionais: padrões repetitivos da estrutura

O efeito estabilizador da cooperação de múltiplas interacções fracas torna favorável a ocorrência de estruturas regulares nas cadeias polipeptídicas. Estas estruturas caracterizam-se por valores dos ângulos ϕ e ψ aproximadamente constantes, e por padrões regulares de ligações de hidrogénio, que são uma força importante na sua estabilização.

Propriedades conformacionais: parâmetros de estruturas helicoidais

As estruturas helicoidais são omnipresentes nas proteínas, particularmente a α -hélice. Caracterizam-se por uma torsão constante em torno dos sucessivos carbonos α , com ângulos ϕ e ψ constantes. Uma hélice pode ser também descrita pelo seu passo p, o número de resíduos por volta n, e a translacção vertical d

Uma hélice direita (*right-handed*) rota no sentido dos dedos de uma mão direita quando avança na direcção do polegar

Uma hélice com *n=2* é *degenerada*, sendo de facto uma fita sem quiralidade.

Propriedades conformacionais: estruturas regulares

	ф	ψ	ω	Resíduos por volta	Translacção por resíduo
Hélice α direita	-57	-47	180	3.60	1.50
Hélice α esquerda	+57	+47	180	3.60	1.50
Folha β antiparalela	-139	+125	-178	2.00	3.40
Folha β paralela	-119	+113	180	2.00	3.20
Hélice 3 ₁₀	-49	-26	180	3.00	2.00
Hélice π	-57	-70	180	4.40	1.15
Poliprolina I	-83	-158	0	3.33	1.90
Poliprolina II	-78	+149	180	3.00	3.12
Polyglicina II	-80	+150	180	3.00	3.10

Parâmetros característicos de algumas das estruturas regulares observadas em proteínas.

Propriedades conformacionais: estruturas helicoidais

Estruturas helicoidais

A hélice α

•Proposta em 1951 por L.Pauling and R.Corey para explicar os dados de difracção de raios X de fibras de proteína.

•A hélice α possui um número *não-inteiro* de resíduos por volta (3.6)

•O grupo carbonilo do resíduo na posição *i* forma uma ligação de hidrogénio com o grupo amina do resíduo na posição *i*+4

•As ligações de hidrogénio possuem uma geometria próxima da ideal.

•O raio da hélice é suficientemente pequeno para permitr a ocorrência de contactos de van der Waals no interior

 As cadeias laterais de cada volta da hélice estão desfasadas em relação às das voltas contíguas, evitando contactos desfavoráveis

A hélice alfa é a estrutura helicoidal mais frequente observada nas proteínas globulares, correspondendo a cerca de 30% dos resíduos nas proteínas de estrutura conhecida. O comprimento médio de uma hélice é aproximadamente 12 resíduos, mas já foram observadas hélices com cerca de 50 resíduos.

A hélice α

•A geometria ideal da hélice α produz ângulos de torsão ϕ = -57.8, ψ = -47.0, passo = 5.4 Å e elevação por resíduo = 1.5 Å

 $\cdot Os$ valores observados para ϕ e ψ em proteínas "reais" são respectivamente -64±7 e -41±7 (valores médios para um grande conjunto de estruturas). Os desvios observados permitem ajustamentos no comprimento e linearidade da hélice

• A conformação de hélice α "esquerda" ocorre quase sempre apenas para resíduos isolados (geralmente Gly), porque as cadeias laterais colidem com o corpo da hélice.

+Os resíduos apresentam diferentes preferências para a ocorrência numa hélice α - a Ala mostra a preferência mais marcada.

O interior das hélices α é densamente empacotado, dai resultando extensos contactos de van der Waals que contribuem para a estabilização da estrutura

"Capping" de hélices

Dado que cada resíduo *i* da hélice α forma uma ligação de hidrogénio com um resíduo *i*+4, existem quatro grupos amina no extremo N da hélice e quatro no extremo C com ligações por satisfazer. Verificase que estas ligações são normalmente satisfeitas por grupos polares ocorrendo nos extremos da hélice, e observam-se preferências específicas para as regiões que flanqueiam os terminais da hélice. Normalmente usa-se a seguinte nomenclatura:

2 - C1 - Cc -

N''-N'-Ncap-N1-N2-N3-...-C3-C2-C1-Ccap-C'-C''-C'''

sendo Ncap e Ccap o primeiro e último resíduos da hélice.

"Capping" de hélices

Numa análise das regiões de terminais de hélices de 12 proteínas observaram-se as seguintes preferências posicionais:

	N	N1	N2	NS	C 2	C 2	C1	С	
	cap	141	112	19.2				⊂ cap	
Pro									
Gly									
Ser									
Thr									
Am									
Gln									
Аş									
Glu									
Lys									
Arg									

É clara a tendência para a ocorrência de resíduos carregados negativamente no N-terminal e de resíduos carregados positivamente no C-terminal. Porquê ?

Macrodipolo das hélices alfa

O efeito combinado dos momentos dipolares das ligações peptídicas gera um dipolo global para a alfahélice que corresponde ter +0.5e no N-terminal e -0.5e no C-terminal

"capping" do N-terminal: capping box

·N-terminal

As estruturas mais usuais de "capping" do N-terminal envolvem uma ligação de hidrogénio entre o oxigénio carbonílico de um resíduo Asp ou hidroxílico de um resíduo Ser ou Thr e o hidrogénio do azoto N3.

Um motivo frequente é a "capping box" Ser-X-X-Glu, com cadeia lateral de Glu (N3) a aceitar o hidrogénio de Ncap.

N-terminal de uma hélice do citocromo c551. Os átomos de azoto dos grupos amina livres estão representados a azul, as ligações de hidrogénio de "capping" com setas e as ligações de hidrogénio (I,I+4) da hélice α a amarelo. Um dos oxigénios do grupo carboxilato de Glu70 (N3) funciona com aceitador do hidrogénio do grupo amina da Ser67 (Ncap).

Capping do C-terminal: motivo de Schellman

·C-terminal

Um terço de todas as hélices alfa apresentam um motivo de capping do C-terminal contendo Gly. No chamado **motivo de Schellman**, o grupo amida de C" forma uma ligação com C3 e o grupo C' com C2. No motivo **alpha-L** o grupo C' forma a ponte de hidrogénio com o carbonilo de C3.Em qualquer uma das situações o resíduo C' é forçado a adoptar uma conformação em hélice alfa invertida, o que justifica a frequência com que Gly ocorre nesta posição.

Motivo de Schellman no citocromo c551

Hélices anfipáticas

As α-helices formam-se muito frequentemente ao long da superfície das proteínas globlulares, tendo um face exposta ao solvent e uma face occulta. A face exposta apresenta-se geralmente mais rica em resíduos de aminoácido **polares**, enquanto que a face oculta é mais rica em resíduos não polares.

Hélice α direita versus esquerda

A conformação em hélice α invertida ou "esquerda" não ocorre em mais que dois ou três resíduos successivos porque as cadeias laterais estão demasiado próximas do corpo da hélice, deixando pouco espaço para os resíduos mais volumosos. Além disso, a zona correspondente do diagrama de Ramachandran é ligeiramente menos estável que a da hélice "direita".

A hélice 3₁₀

A hélice 3₁₀ ocorre raramente em proteínas globulares, e quase sempre em segmentos curtos, o que pode ser compreendido tendo em conta que:

•As ligações de hidrogénio tem uma geometria pouco favorável (grupos carbonilo desviados cerca de 30º em relação à colinearidade dos dipolos)

•As cadeias laterais em voltas successivas da hélice ocorrem em posições idênticas, dando origem a contactos desfavoráveis para resíduos mais volumosos

•A hélice 3₁₀ apresentam ângulos característicos ϕ e ψ numa zona apenas marginalmente estável do diagrama de Ramachandran

Uma das hélices 3₁₀ mais longas em proteínas de estrutura conhecida: 7 resíduos na citocromo c peroxidase

A hélice π

A hélice π é uma conformação muito raramente observada em proteínas, isto porque

 \cdot o eixo da hélico π é oco, não tendo espaço para acomodar moléculas de água, diminuindo a estabilização pelas forças dispersivas

 \cdot Os ângulos de torsão característico da hélice π (ϕ =-57 e ψ =-70) correspondem a uma zona do diagrama de Ramachandran marginalmente estável

Num estudo recente (2000) foram identificadas 8 hélices π nunca com comprimento superior a 1.5 voltas. Em todos os casos existe correlação entre a presença deste tipo de estrutura e a função da proteína

Hélice π na fumarase C

Propriedades conformacionais: "turns"

As voltas, ou "reverse turns", são a terceira estrutura mais observada em proteínas, depois da hélice α e da cadeia β . Os turns são classificados de acordo com padrão de ligações de hidrogénio:

- (i \rightarrow i+2): γ turn
- (i \rightarrow i+3): β turn
- (i \rightarrow i+4): α turn
- (i \rightarrow i+5): π turn

Os "turns" de tipo β são de longe os mais frequentes.

Classificação de turns

Dihedral Angles of Central Residues (deg) ^a							
Bend type	ϕ_{i+1}	ψ_{i+1}	ϕ_{i+2}	ψ_{i+2}			
γ							
classica	al 70 to 85	-60 to -70					
inverse	-70 to -85	60 to 70					
β							
Ī	-60	-30	-90	0			
I'	60	30	90	0			
II	-60	120	80	0			
II'	60	-120	-80	0			
III	-60	-30	-60	-30			
III'	60	30	60	30			
IV	Any bend with two or n	nore angles differing	by $> 40^{\circ}$ from	n those			
	given here						
V	-80	80	80	-80			
V'	80	-80	-80	80			
VIa ^b	-60	120	-90	0			
VIb ^b	-120	120	-60	0			
VII	Kink in chain created by $\phi_3 \approx 180^\circ$	$\psi_2 \approx 180^\circ, \phi_3 < 6$	0°; or $ \psi_2 < 6$	50°,			
VIII	-60	-30	-120	120			

^a The central residue of a γ turn is numbered i + 2; the two central residues of a β turn are i + 2 and i + 3.

^b The peptide bond between residues i + 1 and i + 2 is cis, and residue i + 2 is Pro.

Data from P. Y. Chou and G. D. Fasman, J. Mol. Biol. 115:135-175 (1977); C. M. Wilmot and J. M. Thornton, J. Mol. Biol. 203:221-232 (1988); J. S. Richardson, Adv. Protein Chem. 34:167-339 (1981).

B-Loops

Loops e turns: distribuição de $\phi \mathrel{e} \psi$

Embora os valores de $\phi e \psi$ de *loops* e *turns* caiam geralmente dentro das zonas permitidas do diagrama de Ramchandran, observa-se uma muito maior dispersão dos valores observados quando comparados com as regiões de estrutura secundária regular.

Capping do C-terminal: motivo de Schellman

•C-terminal

Cerca de um terço de todas as hélices alfa apresentam um motivo de capping do C-terminal contendo Gly.

No chamado **motivo de Schellman**, o grupo amida de C" forma uma ligação com C3 e o grupo C' com C2. No motivo **alpha-L** o grupo C' forma a ponte de hidrogénio com o carbonilo de C3.Em qualquer uma das situações o resíduo C' é forçado a adoptar uma conformação em hélice alfa invertida, o que justifica a frequência com que Gly ocorre nesta posição.

Exemplo do motivo de Schellman. Os quatro carbonilos livres Ccap, C1, C2 e C3 são representados a vermelho, os azotos amídicos de C' e C" a azul e as ligação de hidrogénio do motivo por setas.